Ma 416: Complex Variables
 Homework Assignment 2

Prof. Wickerhauser

Due Thursday, September 15th, 2005

1. Prove or find a counterexample to the following statements:
(a) If $f(x)=O(g(x))$ as $x \rightarrow 0$, then $f(x) / g(x) \rightarrow 0$ as $x \rightarrow 0$.
(b) If $f(x)=o(g(x))$ as $x \rightarrow \infty$, then $f(x) /[1+|g(x)|] \rightarrow 0$ as $x \rightarrow \infty$.
(c) If $f(x)=o(g(x))$ as $x \rightarrow 1$, then $f(x)=O(g(x))$ as $x \rightarrow 1$.
(d) If $f(x)=o(x)$ as $x \rightarrow 0$, then $f(x)=O\left(x^{2}\right)$ as $x \rightarrow 0$.
2. Let $f(x, y)=u(x, y)+i v(x, y)$ be a complex-valued function of two real variables. Write $z=x+i y$ for the complex variable with real part x and imaginary part y. Show that the Cauchy-Riemann equations are equivalent to the equation

$$
\frac{\partial}{\partial \bar{z}} f(z)=0
$$

using the defintion $\frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left[\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right]$ on page 19 of our textbook.
3. Determine whether the following functions $f(z)=f(x+i y)$ are analytic:
(a) $f(z)=x^{2}+y^{2}$
(b) $f(z)=x^{2}-y^{2}$
(c) $f(z)=x^{2}-y^{2}+2 i x y$
4. Find the domain of convergence of the following power series:
(a) $\sum_{n=0}^{\infty}(z-3 i)^{2 n}$
(b) $\sum_{n=0}^{\infty} \frac{z^{n}}{\sqrt{n!}}$
5. Write a power series for the $k^{\text {th }}$ derivative of

$$
\sum_{n=0}^{\infty}(-1)^{n} z^{n}
$$

for all $k=1,2, \ldots$, and determine the domain of convergence. What functions do these power series represent?
6. Determine, with proof, whether the following series converge uniformly on the domain $|z|<1$:
(a) $\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}$;
(b) $\sum_{n=0}^{\infty} z^{n}$.

