Ma 416: Complex Variables Homework Assignment 3

Prof. Wickerhauser

Due Thursday, September 22nd, 2005

- 1. Find the Maclaurin series of $\sinh z = \frac{1}{2}(e^z e^{-z})$.
- 2. Show that $\sinh z$ has infinitely many zeroes. (Hint: first express $\sinh z$ in terms of the sine function.)
- 3. If $a_n \ge 0$ and $\sum_{n=1}^{\infty} na_n x^{n-1}$ converges for every $x \in [0,1]$, prove that $\sum_{n=1}^{\infty} a_n x^{n-1}$ converges in the same interval.
- 4. Suppose that an analytic function f has arbitrarily small periods. That is, suppose that there is an infinite sequence $\{p_k : k \in \mathbb{N}\}$ with $|p_k| \to 0$ as $k \to \infty$ such that $f(z+p_k) = f(z)$ for all k and all $z \in \mathbb{C}$. Prove that f must be constant.
- 5. (a) Is there a solution $z \in \mathbf{C}$ to the equation $e^z = 0$? (b) Is there a solution $z \in \mathbf{C}$ to the equation $\tan z = i$?
- 6. Obtain formulas for the sums $\sin \theta + \sin 2\theta + \cdots + \sin n\theta$ and $1 + \cos \theta + \cos 2\theta + \cdots + \cos n\theta$ by considering the real and imaginary parts of the geometric series $\sum_{k=0}^{n} e^{ik\theta}$.
- 7. Let $C = \{z : |z| = r\}$ be a circle of radius r > 0, centered at the origin in **C**, equipped with the positive (counterclockwise) orientation. (a) Compute $\int_C (1/z) dz$. (b) Compute $\int_C (1/\bar{z}) dz$. (Hint: parametrize C.)
- 8. Find all the zeros of the function $f(z) = 2 + \cos z$. (Hint: if they exist, they must be nonreal.)