Ma 416: Complex Variables Homework Assignment 3

Prof. Wickerhauser

Due Thursday, September 22nd, 2005

1. Find the Maclaurin series of $\sinh z=\frac{1}{2}\left(e^{z}-e^{-z}\right)$.
2. Show that $\sinh z$ has infinitely many zeroes. (Hint: first express $\sinh z$ in terms of the sine function.)
3. If $a_{n} \geq 0$ and $\sum_{n=1}^{\infty} n a_{n} x^{n-1}$ converges for every $x \in[0,1]$, prove that $\sum_{n=1}^{\infty} a_{n} x^{n-1}$ converges in the same interval.
4. Suppose that an analytic function f has arbitrarily small periods. That is, suppose that there is an infinite sequence $\left\{p_{k}: k \in \mathbf{N}\right\}$ with $\left|p_{k}\right| \rightarrow 0$ as $k \rightarrow \infty$ such that $f\left(z+p_{k}\right)=f(z)$ for all k and all $z \in \mathbf{C}$. Prove that f must be constant.
5. (a) Is there a solution $z \in \mathbf{C}$ to the equation $e^{z}=0$? (b) Is there a solution $z \in \mathbf{C}$ to the equation $\tan z=i$?
6. Obtain formulas for the sums $\sin \theta+\sin 2 \theta+\cdots+\sin n \theta$ and $1+\cos \theta+\cos 2 \theta+\cdots+\cos n \theta$ by considering the real and imaginary parts of the geometric series $\sum_{k=0}^{n} e^{i k \theta}$.
7. Let $C=\{z:|z|=r\}$ be a circle of radius $r>0$, centered at the origin in \mathbf{C}, equipped with the positive (counterclockwise) orientation. (a) Compute $\int_{C}(1 / z) d z$. (b) Compute $\int_{C}(1 / \bar{z}) d z$. (Hint: parametrize C.)
8. Find all the zeros of the function $f(z)=2+\cos z$. (Hint: if they exist, they must be nonreal.)
