Ma 416: Complex Variables Homework Assignment 4

Prof. Wickerhauser

Due Thursday, September 29th, 2005

1. Let $f_{n}(x)=\left[x^{n}\left(1-x^{n}\right)\right]$ for $n=1,2,3, \ldots$. Does the sequence $\left\{f_{n}(x)\right\}$ converge uniformly on $0<x<1$?
2. Use Cauchy's Inequalities to deduce Liouville's Theorem.
3. Let $D \subset \mathbf{C}$ be the closed diamond-shaped region with vertices $1, i,-1,-i$. Suppose that $f=f(z)$ is analytic on D and satisfies $|f(z)| \leq M$ for all $z \in D$. Prove that $\left|f^{\prime}(0)\right| \leq M \sqrt{2}$ and $\left|f^{\prime \prime}(0)\right| \leq 4 M$.
4. Suppose that $f(z)$ is analytic on $|z|<2$. Define $F_{0}(z)=f(z)$ and $F_{n+1}(z)=$ $\int_{0}^{z} F_{n}(w) d w$ for $n \geq 0$. Prove that if $\left\{F_{n}(z)\right\}$ converges uniformly on $|z|<1$, then $f(z)=c e^{z}$ for some constant c.
5. Recall that $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}$ for all real x. Show that

$$
\lim _{n \rightarrow \infty}\left(1+\frac{z}{n}\right)^{n}=e^{z}
$$

for all complex z. (Hint: use the uniform convergence theorem and the coincidence principle.)
6. Compute $\Gamma(3 / 2)$ and $\Gamma(-1 / 2)$.

