Ma 416: Complex Variables Homework Assignment 4

Prof. Wickerhauser

Due Thursday, September 29th, 2005

- 1. Let $f_n(x) = [x^n(1-x^n)]$ for n = 1, 2, 3, ... Does the sequence $\{f_n(x)\}$ converge uniformly on 0 < x < 1?
- 2. Use Cauchy's Inequalities to deduce Liouville's Theorem.
- 3. Let $D \subset \mathbf{C}$ be the closed diamond-shaped region with vertices 1, i, -1, -i. Suppose that f = f(z) is analytic on D and satisfies $|f(z)| \leq M$ for all $z \in D$. Prove that $|f'(0)| \leq M\sqrt{2}$ and $|f''(0)| \leq 4M$.
- 4. Suppose that f(z) is analytic on |z| < 2. Define $F_0(z) = f(z)$ and $F_{n+1}(z) = \int_0^z F_n(w) dw$ for $n \ge 0$. Prove that if $\{F_n(z)\}$ converges uniformly on |z| < 1, then $f(z) = ce^z$ for some constant c.
- 5. Recall that $\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = e^x$ for all real x. Show that

$$\lim_{n \to \infty} \left(1 + \frac{z}{n} \right)^n = e^z,$$

for all complex z. (Hint: use the uniform convergence theorem and the coincidence principle.)

6. Compute $\Gamma(3/2)$ and $\Gamma(-1/2)$.