Ma 416: Complex Variables Homework Assignment 7

Prof. Wickerhauser

Due Thursday, October 27, 2005

Read R. P. Boas, Invitation to Complex Analysis, Chapter 2, sections 12A-13C.

1. Use the argument principle to count the zeros of $P(z)=z^{4}+z^{3}+6 z^{2}+3 z+5$ in the left half-plane $\{\Re z<0\}$ and right half-plane $\{\Re z>0\}$ of the complex plane.
2. Use Rouché's theorem to determine the number of zeros of $3 e^{z / 2}+z$ satisfying $|z|<1$.
3. Suppose $\left\{f_{n}: n=1,2, \ldots\right\}$ is an infinite sequence of analytic functions that converges uniformly in all compact subsets of a region D containing 0 .
(a) Show that $\left\{\exp \left(f_{n}\right): n=1,2, \ldots\right\}$ is also an infinite sequence of analytic functions that converges uniformly in each compact subset of D.
(b) Show that if $\lim _{n \rightarrow \infty} \exp \left(f_{n}(0)\right)=0$, then $\lim _{n \rightarrow \infty} \exp \left(f_{n}(z)\right)=0$ for all $z \in D$.
4. Is it possible for a function $f=f(z)$ which takes only purely imaginary values to be analytic on $\{|z|<1\}$?
5. Show that $f(z)=z /(1-z)^{2}$ is univalent in $|z|<1$.
6. Prove that the converse to Darboux's theorem is false: Find a simple closed curve S and an analytic function $f=f(z)$ such that f is univalent inside S but not univalent on S.
