Ma 416: Complex Variables Homework Assignment 10

Prof. Wickerhauser

Due Thursday, November 17th, 2005

Read R. P. Boas, Invitation to Complex Analysis, Chapter 3, sections 17A–18C.

- 1. Verify that 1/(1-z) can be continued outside the unit disk by expanding it about z = ih for some 0 < h < 1. Can you find an expansion about z = i?
- 2. Suppose $f(z) = \sum_{n=0}^{\infty} z^{2^n}$. Find the radius of convergence R of this power series. Is there a function g(z) analytic on a larger region than $D = \{|z| < R\}$ that agrees with f(z) at all $z \in R$?
- 3. Use Abel's theorem to conclude that $\sum_{n=1}^{\infty} (-1)^n / n = -\ln 2$.
- 4. Show that

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{5}} + \frac{1}{\sqrt{6}} - \frac{1}{\sqrt{7}} - \frac{1}{\sqrt{8}} + \cdots$$

converges.

- 5. Find the (C, 1) sums of the series
 - (a) $\sum_{n=0}^{\infty} (-1)^n$,
 - (b) $\sum_{n=1}^{\infty} (-1)^n$, and
 - (c) $1 1 + 0 + 1 1 + 0 + 1 1 + 0 + \cdots$ (where the terms 1, -1, 0 repeat forever).
- 6. Show that if $f(x) = \sum_{n=0}^{\infty} a_n x^n$ is convergent in |x| < 1 with $|na_n| \le 8$ for all n, and $f(x) \to +\infty$ as $x \to 1-$, then $\sum_{n=0}^{\infty} a_n = +\infty$.