Ma 416: Complex Variables Homework Assignment 10

Prof. Wickerhauser

Due Thursday, November 17th, 2005

Read R. P. Boas, Invitation to Complex Analysis, Chapter 3, sections 17A-18C.

1. Verify that $1 /(1-z)$ can be continued outside the unit disk by expanding it about $z=i h$ for some $0<h<1$. Can you find an expansion about $z=i$?
2. Suppose $f(z)=\sum_{n=0}^{\infty} z^{2^{n}}$. Find the radius of convergence R of this power series. Is there a function $g(z)$ analytic on a larger region than $D=\{|z|<R\}$ that agrees with $f(z)$ at all $z \in R$?
3. Use Abel's theorem to conclude that $\sum_{n=1}^{\infty}(-1)^{n} / n=-\ln 2$.
4. Show that

$$
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{6}}-\frac{1}{\sqrt{7}}-\frac{1}{\sqrt{8}}+\cdots
$$

converges.
5. Find the $(C, 1)$ sums of the series
(a) $\sum_{n=0}^{\infty}(-1)^{n}$,
(b) $\sum_{n=1}^{\infty}(-1)^{n}$, and
(c) $1-1+0+1-1+0+1-1+0+\cdots$ (where the terms $1,-1,0$ repeat forever).
6. Show that if $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is convergent in $|x|<1$ with $\left|n a_{n}\right| \leq 8$ for all n, and $f(x) \rightarrow+\infty$ as $x \rightarrow 1-$, then $\sum_{n=0}^{\infty} a_{n}=+\infty$.

