Ma 416: Complex Variables Homework Assignment 11

Prof. Wickerhauser

Due Thursday, December 1st, 2005

Read R. P. Boas, Invitation to Complex Analysis, Chapter 4, sections 19A-20F.

- 1. Find an analytic function f whose real part is $\Re f(x+iy) = x^3y xy^3$.
- 2. Find the conjugate harmonic function of $g(x, y) = e^{-y} \cos x$.
- 3. Is the function $h(x, y) = x^2 + y^2$ the imaginary part of some function f(x+iy) analytic in the unit disk in **C**?
- 4. For $0 \le r < 1$ and $0 \le \phi \le 2\pi$, define the function

$$I(r,\phi) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{(1-r^2) \, d\theta}{1+r^2 - 2r \cos(\theta - \phi)}$$

(This is the integral of the Poisson kernel $P(r, \theta - \phi)$.)

(a) Show that $I(r, \phi)$ does not depend on ϕ . (Hint: substitute $\theta \leftarrow \theta' + \phi$.)

(b) Show that $I(r, \phi)$ does not depend on r. (Hint: put $a = 2r/(1+r^2)$, observe that $(1-r^2)/(1+r^2) = \sqrt{1-a^2}$, and look up $\int_{-\pi}^{\pi} d\theta/(1-a\cos\theta) = 2\pi/\sqrt{1-a^2}$ in a table of integrals.)

(c) Show that $I(r, \phi) = 1$ for all $0 \le r < 1$ and $0 \le \phi \le 2\pi$ by evaluating I(0, 0) = 1 and using parts (a) and (b).

(d) Conclude that if u = u(x, y) is a harmonic function on the unit disk $D = \{x^2 + y^2 \le 1\}$, and u(x, y) = K for all $x^2 + y^2 = 1$, then u(x, y) = K for all $(x, y) \in D$.

5. Show directly that $u(x, y) = x^2 - y^2$ satisfies the averaging property: if R > 0, $C_R = \{r(\theta) = (x_0 + R\cos\theta, y_0 + R\sin\theta) : 0 \le \theta \le 2\pi\}$, and $ds = ||r'(\theta)|| d\theta$ is the arc length differential on C_R , then

$$\oint_{C_R} u(x,y) \, ds = 2\pi R \, u(x_0,y_0).$$

How can Cauchy's integral formula be used to derive the same results?