Ma 416: Complex Variables Homework Assignment 11

Prof. Wickerhauser

Due Thursday, December 1st, 2005

Read R. P. Boas, Invitation to Complex Analysis, Chapter 4, sections 19A-20F.

1. Find an analytic function f whose real part is $\Re f(x+i y)=x^{3} y-x y^{3}$.
2. Find the conjugate harmonic function of $g(x, y)=e^{-y} \cos x$.
3. Is the function $h(x, y)=x^{2}+y^{2}$ the imaginary part of some function $f(x+i y)$ analytic in the unit disk in \mathbf{C} ?
4. For $0 \leq r<1$ and $0 \leq \phi \leq 2 \pi$, define the function

$$
I(r, \phi)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\left(1-r^{2}\right) d \theta}{1+r^{2}-2 r \cos (\theta-\phi)} .
$$

(This is the integral of the Poisson kernel $P(r, \theta-\phi)$.)
(a) Show that $I(r, \phi)$ does not depend on ϕ. (Hint: substitute $\theta \leftarrow \theta^{\prime}+\phi$.)
(b) Show that $I(r, \phi)$ does not depend on r. (Hint: put $a=2 r /\left(1+r^{2}\right)$, observe that $\left(1-r^{2}\right) /\left(1+r^{2}\right)=\sqrt{1-a^{2}}$, and look up $\int_{-\pi}^{\pi} d \theta /(1-a \cos \theta)=2 \pi / \sqrt{1-a^{2}}$ in a table of integrals.)
(c) Show that $I(r, \phi)=1$ for all $0 \leq r<1$ and $0 \leq \phi \leq 2 \pi$ by evaluating $I(0,0)=1$ and using parts (a) and (b).
(d) Conclude that if $u=u(x, y)$ is a harmonic function on the unit disk $D=\left\{x^{2}+y^{2} \leq\right.$ $1\}$, and $u(x, y)=K$ for all $x^{2}+y^{2}=1$, then $u(x, y)=K$ for all $(x, y) \in D$.
5. Show directly that $u(x, y)=x^{2}-y^{2}$ satisfies the averaging property: if $R>0, C_{R}=$ $\left\{r(\theta)=\left(x_{0}+R \cos \theta, y_{0}+R \sin \theta\right): 0 \leq \theta \leq 2 \pi\right\}$, and $d s=\left\|r^{\prime}(\theta)\right\| d \theta$ is the arc length differential on C_{R}, then

$$
\oint_{C_{R}} u(x, y) d s=2 \pi R u\left(x_{0}, y_{0}\right) .
$$

How can Cauchy's integral formula be used to derive the same results?

