Ma 416: Complex Variables Homework Assignment 12

Prof. Wickerhauser

Due Thursday, December 8th, 2005

Read R. P. Boas, *Invitation to Complex Analysis*, Chapter 4, sections 21A–23B and 25A-25E.

1. Suppose that u = u(x, y) is continuous on the closed unit disk $D = \{(x, y) : x^2 + y^2 \le 1\}$ and u is twice continuously differentiable with $\Delta u(x, y) = 0$ inside D. Find a series representing u for each of the following boundary conditions $u(\cos \theta, \sin \theta) = \psi(\theta)$, $-\pi \le \theta \le \pi$:

(a)
$$\psi(\theta) = \begin{cases} 1, & \text{if } \theta \in [-\pi/2, \pi/2]; \\ 0, & \text{otherwise,} \end{cases}$$
 (b) $\psi(\theta) = \sin \theta.$

2. Suppose that u(x, y) is continuous on the closed annulus $A = \{(x, y) : 1 \le x^2 + y^2 \le 4\}$ and u is twice continuously differentiable with $\Delta u(x, y) = 0$ inside A. Find a series representing u for each of the following boundary conditions $u(\cos \theta, \sin \theta) = \psi_1(\theta)$ and $u(2\cos \theta, 2\sin \theta) = \psi_2(\theta), -\pi \le \theta \le \pi$:

(a)
$$\psi_1(\theta) = 0; \ \psi_2(\theta) = |\theta|;$$
 (b) $\psi_1(\theta) = \cos \theta; \ \psi_2(\theta) = \sin \theta$

- 3. Suppose that f = f(z) is analytic and univalent in a region $D \subset \mathbb{C}$ and let $E = f(D) = \{f(z) : z \in D\}$ be its range. Write u + iv = f(x + iy) and identify (u, v) with u + iv. Prove that if $\phi = \phi(u, v)$ is a harmonic function in E, then $\psi(x, y) \stackrel{\text{def}}{=} \phi(f(x + iy))$ is a harmonic function in D.
- 4. Find a Möbius transform mapping 0, 1, i to $\infty, 1, -i$, respectively. Is it unique?
- 5. Find all the Möbius transforms that the unit disk $\{|z| < 1\}$ to its exterior $\{|z| > 1\}$.