Ma 416: Complex Variables Solutions to Homework Assignment 1

Prof. Wickerhauser

Due Thursday, September 8th, 2005

1. Find the real parts, imaginary parts, and absolute values of the complex numbers
(a) $\frac{i+1}{i-1}$
(b) $\frac{1}{(1+2 i)(3 i-4)}$

Solution: (a) real part 0, imaginary part -1 , absolute value 1 .
(b) real part $-2 / 25$, imaginary part $1 / 25$, absolute value $1 / \sqrt{125}=1 /(5 \sqrt{5})$.
2. Graph the sets of points described by each of the following formulas:
(a) $|z-i| \leq 2$
(b) $\operatorname{Im} z>2 \operatorname{Re} z$

Solution: (a) This is a closed disk of radius 2 centered at $0+i=(0,1)$ in the complex plane.
(b) This is an open half-plane lying above the line $y=2 x$.
3. Find the absolute value and principal argument for the following expressions:
(a) $3[\cos (2 \pi / 3)+i \sin (2 \pi / 3)]$
(b) $(3+4 i) /(5 i-12)$

Solution: (a) This number is in polar form $r(\cos \theta+i \sin \theta)$ with an angle θ in the principal range $(-\pi, \pi]$, so we simply read the absolute value $r=3$ and principal argument $2 \pi / 3$.
(b) Compute the absolute value as the ratio of the numerator and denominator absolute values: $5 / 13$. Compute an argument from the complex ratio after eliminating the denominator: $(3+4 i) /(5 i-12)=$ $(-16-63 i) / 169$, so we may use $\arctan (63 / 16) \approx 1.3221 \in(-\pi, \pi]$. Note that this is the same as the difference of the numerator and denominator principal arguments:

$$
\arctan (4 / 3)-\arctan (-5 / 12)=\arctan (4 / 3)+\arctan (5 / 12)=\arctan (63 / 16)
$$

though the difference of principal arguments may not fall in the range $(-\pi, \pi]$ in general.
4. Find an argument in the interval $[0,2 \pi)$ for the following expressions, valid for any complex number z :
(a) $z-\bar{z}$
(b) $z+\bar{z}$
(c) $z \bar{z}$
(d) z / \bar{z}, if $z \neq 0$

Solution: (a) $\arg (z-\bar{z}) \in\{\pi / 2,3 \pi / 2\}$, since this difference is purely imaginary.
(b) $\arg (z+\bar{z}) \in\{0, \pi\}$, since this sum is purely real.
(c) $\arg (z \bar{z})=\arg \left(|z|^{2}\right)=0$, since the absolute value is purely real and positive.
(d) $\arg (z / \bar{z})=\arg (z)-\arg (\bar{z})=\arg (z)+\arg (z)=2 \arg (z)$, for any $z \neq 0$. This will be in the interval $[0,2 \pi)$ for $\arg (z) \in[0, \pi)$; if $\arg (z) \in[\pi, 2 \pi)$, use $\arg (z / \bar{z})=2 \arg (z)-2 \pi$.
5. Simplify $(1+i)^{17}$ into the form $a+b i$.

Solution: Write $1+i=\sqrt{2}[\cos (\pi / 4)+i \sin (\pi / 4)]$ and use De Moivre's formula to obtain $(1+i)^{17}=2^{17 / 2}[\cos (17 \pi / 4)+i \sin (17 \pi / 4)]=256+256 i$.
6. Find all complex numbers z satisfying the equation $|z|^{2}=2 \bar{z}$.

Solution: Write $z=r(\cos \theta+i \sin \theta)$ for real $r>0$ and $\theta \in[0,2 \pi)$. The equation becomes

$$
r^{2}=2 r(\cos \theta-i \sin \theta)
$$

which is evidently satisfied by $r=0$ and any θ, namely $z=0$, and also by the points with $r>0$ on the polar curve

$$
r=2(\cos \theta-i \sin \theta)
$$

But since r is purely real, we must have $\sin \theta=0$. Thus $\cos \theta=1$, so $r=2$ and $z=2+0 i$.
Hence the only solutions are $z=0$ and $z=2$.

