Ma 416: Complex Variables Solutions to Homework Assignment 1

Prof. Wickerhauser

Due Thursday, September 8th, 2005

1. Find the real parts, imaginary parts, and absolute values of the complex numbers

(a)
$$\frac{i+1}{i-1}$$
 (b) $\frac{1}{(1+2i)(3i-4)}$

Solution: (a) real part 0, imaginary part -1, absolute value 1.

(b) real part -2/25, imaginary part 1/25, absolute value $1/\sqrt{125} = 1/(5\sqrt{5})$.

2. Graph the sets of points described by each of the following formulas:

(a) $|z - i| \le 2$

(b) Im z > 2 Re z

Solution: (a) This is a closed disk of radius 2 centered at 0 + i = (0, 1) in the complex plane. (b) This is an open half-plane lying above the line y = 2x.

- 3. Find the absolute value and principal argument for the following expressions:
 - (a) $3\left[\cos(2\pi/3) + i\sin(2\pi/3)\right]$
 - (b) (3+4i)/(5i-12)

Solution: (a) This number is in polar form $r(\cos \theta + i \sin \theta)$ with an angle θ in the principal range $(-\pi, \pi]$, so we simply read the absolute value r = 3 and principal argument $2\pi/3$.

(b) Compute the absolute value as the ratio of the numerator and denominator absolute values: 5/13. Compute an argument from the complex ratio after eliminating the denominator: (3+4i)/(5i-12) = (-16-63i)/169, so we may use $\arctan(63/16) \approx 1.3221 \in (-\pi, \pi]$. Note that this is the same as the difference of the numerator and denominator principal arguments:

 $\arctan(4/3) - \arctan(-5/12) = \arctan(4/3) + \arctan(5/12) = \arctan(63/16),$

though the difference of principal arguments may not fall in the range $(-\pi, \pi]$ in general.

- 4. Find an argument in the interval $[0, 2\pi)$ for the following expressions, valid for any complex number z:
 - (a) $z \bar{z}$
 - (b) $z + \bar{z}$
 - (c) $z\bar{z}$
 - (d) z/\bar{z} , if $z \neq 0$

Solution: (a) $\arg(z - \bar{z}) \in \{\pi/2, 3\pi/2\}$, since this difference is purely imaginary.

- (b) $\arg(z + \overline{z}) \in \{0, \pi\}$, since this sum is purely real.
- (c) $\arg(z\bar{z}) = \arg(|z|^2) = 0$, since the absolute value is purely real and positive.
- (d) $\arg(z/\bar{z}) = \arg(z) \arg(\bar{z}) = \arg(z) + \arg(z) = 2\arg(z)$, for any $z \neq 0$. This will be in the interval $[0, 2\pi)$ for $\arg(z) \in [0, \pi)$; if $\arg(z) \in [\pi, 2\pi)$, use $\arg(z/\bar{z}) = 2\arg(z) 2\pi$.

5. Simplify $(1+i)^{17}$ into the form a + bi.

Solution: Write $1 + i = \sqrt{2} [\cos(\pi/4) + i \sin(\pi/4)]$ and use De Moivre's formula to obtain $(1+i)^{17} = 2^{17/2} [\cos(17\pi/4) + i \sin(17\pi/4)] = 256 + 256i.$

6. Find all complex numbers z satisfying the equation $|z|^2 = 2\overline{z}$.

Solution: Write $z = r(\cos \theta + i \sin \theta)$ for real r > 0 and $\theta \in [0, 2\pi)$. The equation becomes

$$r^2 = 2r(\cos\theta - i\sin\theta),$$

which is evidently satisfied by r = 0 and any θ , namely z = 0, and also by the points with r > 0 on the polar curve

$$r = 2(\cos\theta - i\sin\theta).$$

But since r is purely real, we must have $\sin \theta = 0$. Thus $\cos \theta = 1$, so r = 2 and z = 2 + 0i. Hence the only solutions are z = 0 and z = 2.