Ma 416: Complex Variables Solutions to Homework Assignment 2

Prof. Wickerhauser
Due Thursday, September 15th, 2005

1. Prove or find a counterexample to the following statements:
(a) If $f(x)=O(g(x))$ as $x \rightarrow 0$, then $f(x) / g(x) \rightarrow 0$ as $x \rightarrow 0$.
(b) If $f(x)=o(g(x))$ as $x \rightarrow \infty$, then $f(x) /[1+|g(x)|] \rightarrow 0$ as $x \rightarrow \infty$.
(c) If $f(x)=o(g(x))$ as $x \rightarrow 1$, then $f(x)=O(g(x))$ as $x \rightarrow 1$.
(d) If $f(x)=o(x)$ as $x \rightarrow 0$, then $f(x)=O\left(x^{2}\right)$ as $x \rightarrow 0$.

Solution: (a) This is false. Let $f(x)=g(x)=1$ for all x; then $f(x) / g(x)=1$ for all x and cannot have 0 as a limit as $x \rightarrow 0$.
(b) This is true. By definition, $f(x)=o(g(x))$ as $x \rightarrow \infty$ implies that $f(x) / g(x) \rightarrow 0$ as $x \rightarrow \infty$. But then $|f(x) / g(x)| \rightarrow 0$ as $x \rightarrow \infty$, and

$$
0 \leq \frac{|f(x)|}{1+|g(x)|} \leq \frac{|f(x)|}{|g(x)|} \rightarrow 0, \quad \text { as } x \rightarrow \infty
$$

so the result follows from the squeeze law of limits.
(c) This is true. The hypothesis $f(x)=o(g(x))$ as $x \rightarrow \infty$ implies that $\mid f(x) / g(x) \rightarrow 0$ as $x \rightarrow \infty$. But then for any $\epsilon>0$ there must be some $\delta>0$ such that $|f(x) / g(x)| \leq \epsilon$ for all x satisfying $|x-1|<\delta$. Choosing $\epsilon=2$ and finding the corresponding δ yields the result:

$$
|f(x)| \leq 2|g(x)| \quad \text { for all } x \text { with }|x-1|<\delta
$$

which is a particular case of the statement $f(x)=O(g(x))$ as $x \rightarrow 1$.
(d) This is false. The function $f(x)=x \sqrt{|x|}$ satisfies $f(x)=o(x)$ as $x \rightarrow 0$ but not $f(x)=O\left(x^{2}\right)$ as $x \rightarrow 0$, since $\left|f(x) / x^{2}\right|=1 / \sqrt{|x|}$ is not bounded in any neighborhood of $x=0$.
2. Let $f(x, y)=u(x, y)+i v(x, y)$ be a complex-valued function of two real variables. Write $z=x+i y$ for the complex variable with real part x and imaginary part y. Show that the Cauchy-Riemann equations are equivalent to the equation

$$
\frac{\partial}{\partial \bar{z}} f(z)=0
$$

using the defintion $\frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left[\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right]$ on page 19 of our textbook.
Solution: Compute

$$
\frac{\partial}{\partial \bar{z}} f(z)=\frac{1}{2}\left[\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}+i \frac{\partial u}{\partial y}-\frac{\partial v}{\partial y}\right]
$$

If $\frac{\partial}{\partial \bar{z}} f(z)=0$, then both the real and imaginary parts of the derivative must be zero, so

$$
\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}=0 ; \quad \frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}=0
$$

These are the Cauchy-Riemann equations.
Conversely, if the Cauchy-Riemann equations are satisfied by u and v, then we will have $\frac{\partial}{\partial \bar{z}} f(z)=0$ for $f=u+i v$.
Note that the factor $\frac{1}{2}$ in the definition of $\frac{\partial}{\partial \bar{z}}$ plays no role in this equivalence.
3. Determine whether the following functions $f(z)=f(x+i y)$ are analytic:
(a) $f(z)=x^{2}+y^{2}$
(b) $f(z)=x^{2}-y^{2}$
(c) $f(z)=x^{2}-y^{2}+2 i x y$

Solution: (a) No. We may write $f(z)=|z|^{2}=z \bar{z}$, so $\frac{\partial}{\partial \bar{z}} f(z)=z \neq 0$.
(b) No. Write $u(x, y)=x^{2}-y^{2}$ and $v(x, y)=0$. Then the Cauchy-Riemann equations are not satisfied, since $\frac{\partial u}{\partial x}=2 x \neq 0=\frac{\partial v}{\partial y}$.
(c) Yes, as we may write $f(z)=z^{2}$ which satisfies $\frac{\partial}{\partial \bar{z}} f(z)=0$ for all z. Hence the Cauchy-Riemann equations are satisfied. But also, the real and imaginary parts of f are continuous and have continuous partial derivatives (as they are polynomials), so by exercise 2.3 on page 17 of the text, f is analytic.
4. Find the domain of convergence of the following power series:

$$
\begin{array}{ll}
\text { (a) } \sum_{n=0}^{\infty}(z-3 i)^{2 n} & \text { (b) } \sum_{n=0}^{\infty} \frac{z^{n}}{\sqrt{n!}}
\end{array}
$$

Solution: (a) By the ratio test, the radius of convergence is 1 about the point $3 i$, so the domain of convergence is $\{z:|z-3 i|<1\}$.
(b) By the ratio test, the radius of convergence is ∞, so the domain of convergence is the entire complex plane.
5. Write a power series for the $k^{\text {th }}$ derivative of

$$
\sum_{n=0}^{\infty}(-1)^{n} z^{n}
$$

for all $k=1,2, \ldots$, and determine the domain of convergence. What functions do these power series represent?

Solution: The power series about $z=0$ for the $k^{\text {th }}$ derivative is

$$
\sum_{n=k}^{\infty}(-1)^{n}(n) \cdots(n-k+1) z^{n-k}=\sum_{n=k}^{\infty}(-1)^{n} \frac{n!}{(n-k)!} z^{n-k},
$$

for all $k=1,2, \ldots$. The domain of convergence is $\{|z|<1\}$ in all cases. These power series represent the functions

$$
\frac{d^{k}}{d z^{k}}\left[\frac{1}{1+z}\right]=\frac{(-1)^{k} k!}{(1+z)^{k+1}}
$$

on the domain of convergence.
6. Determine, with proof, whether the following series converge uniformly on the domain $|z|<1$:
(a) $\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}$;
(b) $\sum_{n=0}^{\infty} z^{n}$.

Solution: (a) Yes. This series satisfies the Weierstrass M-test with constants $M_{n}=1 / n^{2}$, and everyone knows that $\sum 1 / n^{2}=\pi^{2} / 6<\infty$.
(b) No. The series diverges at $z=1$, suggesting nonuniform convergence near there. For proof, for any real $0<z<1$ and any two integers $0<P<Q$ we may compute

$$
\left|\sum_{n=P}^{Q-1} z^{n}\right|=\sum_{n=P}^{Q-1} z^{n}=\sum_{n=0}^{Q-1} z^{n}-\sum_{n=0}^{P-1} z^{n}=\frac{z^{P}-z^{Q}}{1-z} .
$$

To have uniform convergence, it is necessary that the rightmost expression can be made arbitrarily small for all $|z|<1$ and any $Q>P$ simply by choosing large enough P. However, given any fixed P we observe that

$$
\lim _{z \rightarrow 1-}\left(\lim _{Q \rightarrow \infty} \frac{z^{P}-z^{Q}}{1-z}\right)=\lim _{z \rightarrow 1-} \frac{z^{P}}{1-z}=+\infty
$$

so for every P there will always be some combination of z near 1 and big Q that yields big $\left|\sum_{n=P}^{Q-1} z^{n}\right|$. Hence the convergence of $\sum z^{n}$ cannot be uniform on $[0,1)$.

