
Ma 416: Complex Variables

Solutions to Homework Assignment 2

Prof. Wickerhauser

Due Thursday, September 15th, 2005

1. Prove or find a counterexample to the following statements:

(a) If f(x) = O(g(x)) as x → 0, then f(x)/g(x) → 0 as x → 0.

(b) If f(x) = o(g(x)) as x →∞, then f(x)/[1 + |g(x)|] → 0 as x →∞.

(c) If f(x) = o(g(x)) as x → 1, then f(x) = O(g(x)) as x → 1.

(d) If f(x) = o(x) as x → 0, then f(x) = O(x2) as x → 0.

Solution: (a) This is false. Let f(x) = g(x) = 1 for all x; then f(x)/g(x) = 1 for all x and cannot
have 0 as a limit as x → 0.

(b) This is true. By definition, f(x) = o(g(x)) as x →∞ implies that f(x)/g(x) → 0 as x →∞. But
then |f(x)/g(x)| → 0 as x →∞, and

0 ≤ |f(x)|
1 + |g(x)|

≤ |f(x)|
|g(x)|

→ 0, as x →∞,

so the result follows from the squeeze law of limits.

(c) This is true. The hypothesis f(x) = o(g(x)) as x →∞ implies that |f(x)/g(x) → 0 as x →∞. But
then for any ε > 0 there must be some δ > 0 such that |f(x)/g(x)| ≤ ε for all x satisfying |x− 1| < δ.
Choosing ε = 2 and finding the corresponding δ yields the result:

|f(x)| ≤ 2|g(x)| for all x with |x− 1| < δ,

which is a particular case of the statement f(x) = O(g(x)) as x → 1.

(d) This is false. The function f(x) = x
√
|x| satisfies f(x) = o(x) as x → 0 but not f(x) = O(x2) as

x → 0, since |f(x)/x2| = 1/
√
|x| is not bounded in any neighborhood of x = 0. 2

2. Let f(x, y) = u(x, y)+ iv(x, y) be a complex-valued function of two real variables. Write z = x+ iy for
the complex variable with real part x and imaginary part y. Show that the Cauchy-Riemann equations
are equivalent to the equation

∂

∂z̄
f(z) = 0,

using the defintion ∂
∂z̄ = 1

2

[
∂
∂x + ∂

∂y

]
on page 19 of our textbook.

Solution: Compute
∂

∂z̄
f(z) =

1
2

[
∂u

∂x
+ i

∂v

∂x
+ i

∂u

∂y
− ∂v

∂y

]
If ∂

∂z̄ f(z) = 0, then both the real and imaginary parts of the derivative must be zero, so

∂u

∂x
− ∂v

∂y
= 0;

∂v

∂x
+

∂u

∂y
= 0.
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These are the Cauchy-Riemann equations.

Conversely, if the Cauchy-Riemann equations are satisfied by u and v, then we will have ∂
∂z̄ f(z) = 0

for f = u + iv.

Note that the factor 1
2 in the definition of ∂

∂z̄ plays no role in this equivalence. 2

3. Determine whether the following functions f(z) = f(x + iy) are analytic:

(a) f(z) = x2 + y2

(b) f(z) = x2 − y2

(c) f(z) = x2 − y2 + 2ixy

Solution: (a) No. We may write f(z) = |z|2 = zz̄, so ∂
∂z̄ f(z) = z 6= 0.

(b) No. Write u(x, y) = x2−y2 and v(x, y) = 0. Then the Cauchy-Riemann equations are not satisfied,
since ∂u

∂x = 2x 6= 0 = ∂v
∂y .

(c) Yes, as we may write f(z) = z2 which satisfies ∂
∂z̄ f(z) = 0 for all z. Hence the Cauchy-Riemann

equations are satisfied. But also, the real and imaginary parts of f are continuous and have continuous
partial derivatives (as they are polynomials), so by exercise 2.3 on page 17 of the text, f is analytic.
2

4. Find the domain of convergence of the following power series:

(a)
∞∑

n=0

(z − 3i)2n (b)
∞∑

n=0

zn

√
n!

Solution: (a) By the ratio test, the radius of convergence is 1 about the point 3i, so the domain of
convergence is {z : |z − 3i| < 1}.
(b) By the ratio test, the radius of convergence is ∞, so the domain of convergence is the entire complex
plane. 2

5. Write a power series for the kth derivative of

∞∑
n=0

(−1)nzn,

for all k = 1, 2, . . ., and determine the domain of convergence. What functions do these power series
represent?

Solution: The power series about z = 0 for the kth derivative is

∞∑
n=k

(−1)n(n) · · · (n− k + 1)zn−k =
∞∑

n=k

(−1)n n!
(n− k)!

zn−k,

for all k = 1, 2, . . .. The domain of convergence is {|z| < 1} in all cases. These power series represent
the functions

dk

dzk

[
1

1 + z

]
=

(−1)kk!
(1 + z)k+1

on the domain of convergence. 2

6. Determine, with proof, whether the following series converge uniformly on the domain |z| < 1:

(a)
∞∑

n=1

zn

n2
; (b)

∞∑
n=0

zn.
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Solution: (a) Yes. This series satisfies the Weierstrass M -test with constants Mn = 1/n2, and
everyone knows that

∑
1/n2 = π2/6 < ∞.

(b) No. The series diverges at z = 1, suggesting nonuniform convergence near there. For proof, for
any real 0 < z < 1 and any two integers 0 < P < Q we may compute∣∣∣∣∣

Q−1∑
n=P

zn

∣∣∣∣∣ =
Q−1∑
n=P

zn =
Q−1∑
n=0

zn −
P−1∑
n=0

zn =
zP − zQ

1− z
.

To have uniform convergence, it is necessary that the rightmost expression can be made arbitrarily
small for all |z| < 1 and any Q > P simply by choosing large enough P . However, given any fixed P
we observe that

lim
z→1−

(
lim

Q→∞

zP − zQ

1− z

)
= lim

z→1−

zP

1− z
= +∞,

so for every P there will always be some combination of z near 1 and big Q that yields big
∣∣∣∑Q−1

n=P zn
∣∣∣.

Hence the convergence of
∑

zn cannot be uniform on [0, 1). 2
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