Ma 416: Complex Variables Solutions to Homework Assignment 3

Prof. Wickerhauser

Due Thursday, September 22nd, 2005

1. Find the Maclaurin series of $\sinh z=\frac{1}{2}\left(e^{z}-e^{-z}\right)$.

Solution: The even-power terms of the exponential series cancel, leaving

$$
\sinh z=\sum_{n=0}^{\infty} \frac{z^{2 n+1}}{(2 n+1)!}
$$

2. Show that $\sinh z$ has infinitely many zeroes. (Hint: first express $\sinh z$ in terms of the sine function.)

Solution: Follow the hint. Since $e^{i z}=\cos z+i \sin z$, compute

$$
\sin z=\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right) \quad \Rightarrow \sin i z=\frac{1}{2 i}\left(e^{-z}-e^{z}\right)=-\frac{1}{i} \sinh z=i \sinh z .
$$

Thus $\sinh z=-i \sin i z$. This means $\sinh z=0$ for every $z=i k \pi$ with $k \in \mathbf{Z}$.
3. If $a_{n} \geq 0$ and $\sum_{n=1}^{\infty} n a_{n} x^{n-1}$ converges for every $x \in[0,1]$, prove that $\sum_{n=1}^{\infty} a_{n} x^{n-1}$ converges in the same interval.

Solution: Since all terms are nonnegative, we may employ the comparison test. For any $0<P<Q$, write

$$
0 \leq \sum_{n=P}^{Q} a_{n} x^{n}=x \sum_{n=P}^{Q} a_{n} x^{n-1} \leq x \sum_{n=P}^{Q} n a_{n} x^{n-1}
$$

But since $\sum_{n=1}^{\infty} n a_{n} x^{n-1}$ converges for every $x \in[0,1]$, for every $\epsilon>0$ we can find sufficiently large P so that $0 \leq \sum_{n=P}^{Q} n a_{n} x^{n-1}<\epsilon$ for any $Q>P$. Hence for every $x \in[0,1]$ and every $\epsilon>0$ we can find sufficiently large P so that $0 \leq \sum_{n=P}^{Q} a_{n} x^{n}<\epsilon$ for any $Q>P$. By definition, therefore, $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges for each $x \in[0,1]$.
4. Suppose that an analytic function f has arbitrarily small periods. That is, suppose that there is an infinite sequence $\left\{p_{k}: k \in \mathbf{N}\right\}$ with $\left|p_{k}\right| \rightarrow 0$ as $k \rightarrow \infty$ such that $f\left(z+p_{k}\right)=f(z)$ for all k and all $z \in \mathbf{C}$. Prove that f must be constant.

Solution: Fix an arbitrary $z \in \mathbf{C}$ and observe that if $f\left(z+p_{k}\right)=f(z)$ for all k, then $f^{\prime}(z)=\lim _{k \rightarrow \infty}\left(f\left(z+p_{k}\right)-f(z)\right) / p_{k}=0$. Since z was arbitrary, we have found that $f^{\prime}(z)=0$ in all of \mathbf{C}. Thus f must be constant.
5. (a) Is there a solution $z \in \mathbf{C}$ to the equation $e^{z}=0$? (b) Is there a solution $z \in \mathbf{C}$ to the equation $\tan z=i$?

Solution: (a) No such solution exists, for if it did it would imply that $e^{w}=e^{w-z} e^{z}=$ $e^{w-z} 0=0$ for every complex number w, contradicting $e^{0}=1 \neq 0$.
(b) No such solution exists. Use Euler's formula to write

$$
\tan z=\frac{\sin z}{\cos z}=-i \frac{e^{i z}-e^{-i z}}{e^{i z}+e^{-i z}}
$$

Thus $\tan z=i$ implies that $e^{i z}-e^{-i z}=-\left[e^{i z}-e^{-i z}\right]$, so $e^{i z}=0$. But by part (a), this has no solution.
6. Obtain formulas for the sums $\sin \theta+\sin 2 \theta+\cdots+\sin n \theta$ and $1+\cos \theta+\cos 2 \theta+\cdots+\cos n \theta$ by considering the real and imaginary parts of the geometric series $\sum_{k=0}^{n} e^{i k \theta}$.

Solution: De Moivre's formulas yield

$$
\sum_{k=0}^{n} e^{i k \theta}=[1+\cos \theta+\cos 2 \theta+\cdots+\cos n \theta]+i[\sin \theta+\sin 2 \theta+\cdots+\sin n \theta]
$$

Alternatively, the goemetric sum formula yields

$$
\begin{aligned}
\sum_{k=0}^{n} e^{i k \theta} & =\sum_{k=0}^{n}\left(e^{i \theta}\right)^{k}=\frac{1-e^{i[n+1] \theta}}{1-e^{i \theta}} \\
& =\left(\frac{e^{i \frac{(n+1) \theta}{2}}}{e^{i \frac{\theta}{2}}}\right)\left(\frac{e^{-i \frac{[n+1] \theta}{2}}-e^{i \frac{[n+1] \theta}{2}}}{e^{-i \frac{\theta}{2}}-e^{i \frac{\theta}{2}}}\right)=e^{i \frac{n \theta}{2}}\left(\frac{\sin [n+1] \theta / 2}{\sin \theta / 2}\right)
\end{aligned}
$$

Separating the real and imaginary parts gives

$$
\begin{aligned}
1+\cos \theta+\cos 2 \theta+\cdots+\cos n \theta & =\left(\frac{\sin [n+1] \theta / 2}{\sin \theta / 2}\right) \cos \frac{n \theta}{2} \\
\sin \theta+\sin 2 \theta+\cdots+\sin n \theta & =\left(\frac{\sin [n+1] \theta / 2}{\sin \theta / 2}\right) \sin \frac{n \theta}{2}
\end{aligned}
$$

7. Let $C=\{z:|z|=r\}$ be a circle of radius $r>0$, centered at the origin in \mathbf{C}, equipped with the positive (counterclockwise) orientation. (a) Compute $\int_{C}(1 / z) d z$. (b) Compute $\int_{C}(1 / \bar{z}) d z$. (Hint: parametrize C.)

Solution: Following the hint, write $C=\left\{r e^{i t}: 0 \leq t<2 \pi\right\}$.
(a)

$$
\int_{C} \frac{1}{z} d z=\int_{t=0}^{2 \pi}\left(r e^{i t}\right)^{-1} r e^{i t} i d t=i \int_{t=0}^{2 \pi} d t=2 \pi i .
$$

Note that this is independent of r.
(b)

$$
\int_{C} \frac{1}{\bar{z}} d z=\int_{t=0}^{2 \pi}\left(r e^{-i t}\right)^{-1} r e^{i t} i d t=i \int_{t=0}^{2 \pi} e^{2 i t} d t=0 .
$$

Note that this too is independent of r.
8. Find all the zeros of the function $f(z)=2+\cos z$. (Hint: if they exist, they must be nonreal.)

Solution: Following the hint, write $z=x+i y$ with real and imaginary parts $x, y \in \mathbf{R}$. But then

$$
\cos z=\cos (x+i y)=\cos x \cos i y-\sin x \sin i y=\cos x \cosh y-i \sin x \sinh y
$$

since $\cos i y=\cosh y$ and $\sin i y=i \sinh y$. To solve $2+\cos z=0$ is thus equivalent to finding $z=x+i y$ such that $\cos x \cosh y=-2$ and $\sin x \sinh y=0$.

Now $\sin x \sinh y=0$ if and only if either $\sinh y=0$ or $\sin x=0$. The first case is excluded because it requires $y=0$, so $\cosh y=1$, so $\cos x=-2$ which cannot happen. The second case is equivalent to $x=k \pi$ for $k \in \mathbf{Z}$. Now $\cosh y=\frac{1}{2}\left(e^{y}+e^{-y}\right) \geq 1$ for all real y with equality if and only if $y=0$; otherwise, $\cosh y=C$ has two distinct real roots for every $C>1$. We conclude that

$$
-2=\cos x \cosh y=\cos k \pi \cosh y=(-1)^{k} \cosh y
$$

has a solution if and only if $x=k \pi$ for some odd integer k and y is one of the two real roots of $\cosh y=2$.

