
Ma 416: Complex Variables
Solutions to Homework Assignment 3

Prof. Wickerhauser

Due Thursday, September 22nd, 2005

1. Find the Maclaurin series of sinh z = 1
2
(ez − e−z).

Solution: The even-power terms of the exponential series cancel, leaving

sinh z =
∞∑

n=0

z2n+1

(2n + 1)!

2

2. Show that sinh z has infinitely many zeroes. (Hint: first express sinh z in terms of the
sine function.)

Solution: Follow the hint. Since eiz = cos z + i sin z, compute

sin z =
1

2i
(eiz − e−iz) ⇒ sin iz =

1

2i
(e−z − ez) = −1

i
sinh z = i sinh z.

Thus sinh z = −i sin iz. This means sinh z = 0 for every z = ikπ with k ∈ Z. 2

3. If an ≥ 0 and
∑∞

n=1 nanx
n−1 converges for every x ∈ [0, 1], prove that

∑∞
n=1 anx

n−1

converges in the same interval.

Solution: Since all terms are nonnegative, we may employ the comparison test. For
any 0 < P < Q, write

0 ≤
Q∑

n=P

anx
n = x

Q∑
n=P

anx
n−1 ≤ x

Q∑
n=P

nanx
n−1.

But since
∑∞

n=1 nanx
n−1 converges for every x ∈ [0, 1], for every ε > 0 we can find

sufficiently large P so that 0 ≤ ∑Q
n=P nanx

n−1 < ε for any Q > P . Hence for every
x ∈ [0, 1] and every ε > 0 we can find sufficiently large P so that 0 ≤ ∑Q

n=P anx
n < ε

for any Q > P . By definition, therefore,
∑∞

n=0 anx
n converges for each x ∈ [0, 1]. 2
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4. Suppose that an analytic function f has arbitrarily small periods. That is, suppose
that there is an infinite sequence {pk : k ∈ N} with |pk| → 0 as k → ∞ such that
f(z + pk) = f(z) for all k and all z ∈ C. Prove that f must be constant.

Solution: Fix an arbitrary z ∈ C and observe that if f(z + pk) = f(z) for all k,
then f ′(z) = limk→∞(f(z + pk) − f(z))/pk = 0. Since z was arbitrary, we have found
that f ′(z) = 0 in all of C. Thus f must be constant. 2

5. (a) Is there a solution z ∈ C to the equation ez = 0? (b) Is there a solution z ∈ C to
the equation tan z = i?

Solution: (a) No such solution exists, for if it did it would imply that ew = ew−zez =
ew−z0 = 0 for every complex number w, contradicting e0 = 1 6= 0.

(b) No such solution exists. Use Euler’s formula to write

tan z =
sin z

cos z
= −i

eiz − e−iz

eiz + e−iz

Thus tan z = i implies that eiz − e−iz = −[eiz − e−iz], so eiz = 0. But by part (a), this
has no solution. 2

6. Obtain formulas for the sums sin θ+sin 2θ+· · ·+sin nθ and 1+cos θ+cos 2θ+· · ·+cos nθ
by considering the real and imaginary parts of the geometric series

∑n
k=0 eikθ.

Solution: De Moivre’s formulas yield

n∑
k=0

eikθ = [1 + cos θ + cos 2θ + · · ·+ cos nθ] + i[sin θ + sin 2θ + · · ·+ sin nθ]

Alternatively, the goemetric sum formula yields

n∑
k=0

eikθ =
n∑

k=0

(eiθ)k =
1− ei[n+1]θ

1− eiθ

=

ei
(n+1)θ

2

ei θ
2

e−i
[n+1]θ

2 − ei
[n+1]θ

2

e−i θ
2 − ei θ

2

 = ei nθ
2

(
sin[n + 1]θ/2

sin θ/2

)

Separating the real and imaginary parts gives

1 + cos θ + cos 2θ + · · ·+ cos nθ =

(
sin[n + 1]θ/2

sin θ/2

)
cos

nθ

2

sin θ + sin 2θ + · · ·+ sin nθ =

(
sin[n + 1]θ/2

sin θ/2

)
sin

nθ

2

2

2



7. Let C = {z : |z| = r} be a circle of radius r > 0, centered at the origin in C,
equipped with the positive (counterclockwise) orientation. (a) Compute

∫
C(1/z) dz.

(b) Compute
∫
C(1/z̄) dz. (Hint: parametrize C.)

Solution: Following the hint, write C = {reit : 0 ≤ t < 2π}.
(a) ∫

C

1

z
dz =

∫ 2π

t=0
(reit)−1reiti dt = i

∫ 2π

t=0
dt = 2πi.

Note that this is independent of r.

(b) ∫
C

1

z̄
dz =

∫ 2π

t=0
(re−it)−1reiti dt = i

∫ 2π

t=0
e2it dt = 0.

Note that this too is independent of r. 2

8. Find all the zeros of the function f(z) = 2 + cos z. (Hint: if they exist, they must be
nonreal.)

Solution: Following the hint, write z = x + iy with real and imaginary parts
x, y ∈ R. But then

cos z = cos(x + iy) = cos x cos iy − sin x sin iy = cos x cosh y − i sin x sinh y,

since cos iy = cosh y and sin iy = i sinh y. To solve 2 + cos z = 0 is thus equivalent to
finding z = x + iy such that cos x cosh y = −2 and sin x sinh y = 0.

Now sin x sinh y = 0 if and only if either sinh y = 0 or sin x = 0. The first case is
excluded because it requires y = 0, so cosh y = 1, so cos x = −2 which cannot happen.
The second case is equivalent to x = kπ for k ∈ Z. Now cosh y = 1

2
(ey + e−y) ≥ 1 for

all real y with equality if and only if y = 0; otherwise, cosh y = C has two distinct real
roots for every C > 1. We conclude that

−2 = cos x cosh y = cos kπ cosh y = (−1)k cosh y

has a solution if and only if x = kπ for some odd integer k and y is one of the two real
roots of cosh y = 2. 2
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