Ma 416: Complex Variables Solutions to Homework Assignment 4

Prof. Wickerhauser

Due Thursday, September 29th, 2005

1. Let $f_{n}(x)=\left[x^{n}\left(1-x^{n}\right)\right]$ for $n=1,2,3, \ldots$. Does the sequence $\left\{f_{n}(x)\right\}$ converge uniformly on $0<x<1$?

Solution: \quad No. For any fixed $x \in(0,1), f_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ by the squeeze lemma:

$$
\lim _{n \rightarrow \infty} x^{n}=0 ; \quad \lim _{n \rightarrow \infty}\left(1-x^{n}\right)=1 ; \quad \Rightarrow 0 \leq \lim _{n \rightarrow \infty} f_{n}(x)=0
$$

However, $\sqrt[n]{\frac{1}{2}} \in(0,1)$ and $f_{n}\left(\sqrt[n]{\frac{1}{2}}\right)=\frac{1}{2}\left(1-\frac{1}{2}\right)=\frac{1}{4}$ for any n, so for $0<\epsilon<\frac{1}{4}$ it is impossible to specify N large enough to guarantee

$$
n<N \Rightarrow(\forall x \in(0,1))\left|f_{n}(x)-0\right|<\epsilon,
$$

since $\left|f_{n}(x)-0\right|=\frac{1}{4}$ for some x no matter what n is.
2. Use Cauchy's Inequalities to deduce Liouville's Theorem.

Solution: Assume Cauchy's Inequalities and suppose that f is a bounded function analytic on \mathbf{C}. Then there is some $M<\infty$ satisfying $|f(z)| \leq M$ for all $z \in \mathbf{C}$. Let a_{n} be the $n^{\text {th }}$ Taylor coefficient of f expanded about $z_{0}=0$:

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}=a_{0}+a_{1} z+a_{2} z^{2}+\cdots
$$

For each $n \geq 1$ we show that $a_{n}=0$ by showing that $\left|a_{n}\right|<\epsilon$ for every $\epsilon>0$. So fix $n \geq 1$ and let $\epsilon>0$ be given. Take $r>0$ large enough so that $M r^{-n}<\epsilon$. Since f is analytic on \mathbf{C}, it is analytic on $D_{r} \stackrel{\text { def }}{=}\{|z| \leq r\}$, and since M bounds $|f|$ on \mathbf{C} we have $|f(z)| \leq M$ on $D_{r} \subset \mathbf{C}$. By Cauchy's Inequality for a_{n} we may conclude that $\left|a_{n}\right| \leq M r^{-n}<\epsilon$. Thus $a_{n}=0$ for $n \geq 1$, so $f(z)=a_{0}$.
But this prove that a bounded function analytic on \mathbf{C} must be a constant.
3. Let $D \subset \mathbf{C}$ be the closed diamond-shaped region with vertices $1, i,-1,-i$. Suppose that $f=f(z)$ is analytic on D and satisfies $|f(z)| \leq M$ for all $z \in D$. Prove that $\left|f^{\prime}(0)\right| \leq M \sqrt{2}$ and $\left|f^{\prime \prime}(0)\right| \leq 4 M$.

Solution: Let C be the largest circle centered at 0 that fits inside D. Then C has radius $1 / \sqrt{2}$. We use Cauchy's formulas to estimate the derivatives:

$$
\begin{aligned}
& \left|f^{\prime}(0)\right|=\left|\frac{1!}{2 \pi i} \int_{C} \frac{f(w)}{(w-0)^{2}} d w\right| \leq \frac{M}{2 \pi} \int_{C} \frac{d w}{|w|^{2}}=\frac{M}{2 \pi} \frac{2 \pi(1 / \sqrt{2})}{(1 / \sqrt{2})^{2}}=M \sqrt{2} . \\
& \left|f^{\prime \prime}(0)\right|=\left|\frac{2!}{2 \pi i} \int_{C} \frac{f(w)}{(w-0)^{3}} d w\right| \leq \frac{2 M}{2 \pi} \int_{C} \frac{d w}{|w|^{3}}=\frac{2 M}{2 \pi} \frac{2 \pi(1 / \sqrt{2})}{(1 / \sqrt{2})^{3}}=4 M .
\end{aligned}
$$

Using a smaller circle for C would give a larger right-hand side, and thus a weaker estimate, in both cases.
4. Suppose that $f(z)$ is analytic on $|z|<2$. Define $F_{0}(z)=f(z)$ and $F_{n+1}(z)=$ $\int_{0}^{z} F_{n}(w) d w$ for $n \geq 0$. Prove that if $\left\{F_{n}(z)\right\}$ converges uniformly on $|z|<1$, then $f(z)=c e^{z}$ for some constant c.

Solution: Let $g(z)=\lim _{n \rightarrow \infty} F_{n}(z)$. Since $F_{n}^{\prime}(z)=F_{n-1}(z)$, we also have $g^{\prime}(z)=$ $\lim _{n \rightarrow \infty} F_{n}^{\prime}(z)=g(z)$. We conclude that $g(z)=c e^{z}$ for some constant c.
5. Recall that $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}$ for all real x. Show that

$$
\lim _{n \rightarrow \infty}\left(1+\frac{z}{n}\right)^{n}=e^{z}
$$

for all complex z. (Hint: use the uniform convergence theorem and the coincidence principle.)

Solution: Following the hint, define $f_{n}(z) \stackrel{\text { def }}{=}\left(1+\frac{z}{n}\right)^{n}-e^{z}$ for $n=1,2, \ldots$. This sequence of entire analytic functions converges uniformly on the curve defined by the real interval $[1,0] \subset \mathbf{R} \subset \mathbf{C}$. (Any other positive-length bounded interval in \mathbf{R} would work equally well.) By the uniform convergence theorem on page 58 of our text, $f \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} f_{n}$ is an entire analytic function. But $f(z)=0$ for all real $z \in[0,1]$, so $f(z)=0$ for all $z \in \mathbf{C}$ by the coincidence principle on page 63 of our text.
6. Compute $\Gamma(3 / 2)$ and $\Gamma(-1 / 2)$.

Solution: Use the identity $\Gamma(z+1)=z \Gamma(z)$ with the fact that $\Gamma(1 / 2)=\sqrt{\pi}$ to compute $\Gamma(3 / 2)=\Gamma(1+1 / 2)=\frac{1}{2} \sqrt{\pi}$.
Likewise $(-1 / 2) \Gamma(-1 / 2)=\Gamma(1-1 / 2)=\Gamma(1 / 2)=\sqrt{\pi}$, so $\Gamma(-1 / 2)=-2 \sqrt{\pi}$.

