
Ma 416: Complex Variables
Solutions to Homework Assignment 4

Prof. Wickerhauser

Due Thursday, September 29th, 2005

1. Let fn(x) = [xn(1 − xn)] for n = 1, 2, 3, . . .. Does the sequence {fn(x)} converge
uniformly on 0 < x < 1?

Solution: No. For any fixed x ∈ (0, 1), fn(x) → 0 as n →∞ by the squeeze lemma:

lim
n→∞

xn = 0; lim
n→∞

(1− xn) = 1; ⇒ 0 ≤ lim
n→∞

fn(x) = 0.

However, n

√
1
2
∈ (0, 1) and fn( n

√
1
2
) = 1

2
(1 − 1

2
) = 1

4
for any n, so for 0 < ε < 1

4
it is

impossible to specify N large enough to guarantee

n < N ⇒ (∀x ∈ (0, 1)) |fn(x)− 0| < ε,

since |fn(x)− 0| = 1
4

for some x no matter what n is. 2

2. Use Cauchy’s Inequalities to deduce Liouville’s Theorem.

Solution: Assume Cauchy’s Inequalities and suppose that f is a bounded function
analytic on C. Then there is some M < ∞ satisfying |f(z)| ≤ M for all z ∈ C. Let
an be the nth Taylor coefficient of f expanded about z0 = 0:

f(z) =
∞∑

n=0

anz
n = a0 + a1z + a2z

2 + · · ·

For each n ≥ 1 we show that an = 0 by showing that |an| < ε for every ε > 0. So fix
n ≥ 1 and let ε > 0 be given. Take r > 0 large enough so that Mr−n < ε. Since f

is analytic on C, it is analytic on Dr
def
= {|z| ≤ r}, and since M bounds |f | on C we

have |f(z)| ≤ M on Dr ⊂ C. By Cauchy’s Inequality for an we may conclude that
|an| ≤ Mr−n < ε. Thus an = 0 for n ≥ 1, so f(z) = a0.

But this prove that a bounded function analytic on C must be a constant. 2

3. Let D ⊂ C be the closed diamond-shaped region with vertices 1, i,−1,−i. Suppose
that f = f(z) is analytic on D and satisfies |f(z)| ≤ M for all z ∈ D. Prove that
|f ′(0)| ≤ M

√
2 and |f ′′(0)| ≤ 4M .

1



Solution: Let C be the largest circle centered at 0 that fits inside D. Then C has
radius 1/

√
2. We use Cauchy’s formulas to estimate the derivatives:

|f ′(0)| =
∣∣∣∣∣ 1!

2πi

∫
C

f(w)

(w − 0)2
dw

∣∣∣∣∣ ≤ M

2π

∫
C

dw

|w|2
=

M

2π

2π(1/
√

2)

(1/
√

2)2
= M

√
2.

|f ′′(0)| =
∣∣∣∣∣ 2!

2πi

∫
C

f(w)

(w − 0)3
dw

∣∣∣∣∣ ≤ 2M

2π

∫
C

dw

|w|3
=

2M

2π

2π(1/
√

2)

(1/
√

2)3
= 4M.

Using a smaller circle for C would give a larger right-hand side, and thus a weaker
estimate, in both cases. 2

4. Suppose that f(z) is analytic on |z| < 2. Define F0(z) = f(z) and Fn+1(z) =∫ z
0 Fn(w) dw for n ≥ 0. Prove that if {Fn(z)} converges uniformly on |z| < 1, then

f(z) = cez for some constant c.

Solution: Let g(z) = limn→∞ Fn(z). Since F ′
n(z) = Fn−1(z), we also have g′(z) =

limn→∞ F ′
n(z) = g(z). We conclude that g(z) = cez for some constant c. 2

5. Recall that limn→∞
(
1 + x

n

)n
= ex for all real x. Show that

lim
n→∞

(
1 +

z

n

)n

= ez,

for all complex z. (Hint: use the uniform convergence theorem and the coincidence
principle.)

Solution: Following the hint, define fn(z)
def
=

(
1 + z

n

)n
− ez for n = 1, 2, . . .. This

sequence of entire analytic functions converges uniformly on the curve defined by the
real interval [1, 0] ⊂ R ⊂ C. (Any other positive-length bounded interval in R would
work equally well.) By the uniform convergence theorem on page 58 of our text,

f
def
= limn→∞ fn is an entire analytic function. But f(z) = 0 for all real z ∈ [0, 1], so

f(z) = 0 for all z ∈ C by the coincidence principle on page 63 of our text. 2

6. Compute Γ(3/2) and Γ(−1/2).

Solution: Use the identity Γ(z + 1) = zΓ(z) with the fact that Γ(1/2) =
√

π to
compute Γ(3/2) = Γ(1 + 1/2) = 1

2

√
π.

Likewise (−1/2)Γ(−1/2) = Γ(1− 1/2) = Γ(1/2) =
√

π, so Γ(−1/2) = −2
√

π. 2
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