Ma 416: Complex Variables Solutions to Homework Assignment 5

Prof. Wickerhauser

Due Thursday, October 6th, 2005

Read R. P. Boas, Invitation to Complex Analysis, Chapter 2, sections 8A-8H.

1. Classify the following singularities as removable, poles, or essential. If the singularity is a pole, state its order.
(a) $1 /\left(e^{z^{2}}-1\right)$ at $z=0$
(b) $e^{1 / z}$ at $z=0$
(c) $z / \sin z$ at $z=0$

Solution: (a) Pole of order 2, since $e^{z^{2}}-1=z^{2}+O\left(z^{4}\right)$ as $z \rightarrow 0$.
(b) Essential singularity, since $e^{1 / z_{n}}=1$ for $z_{n}=1 / 2 n \pi i \rightarrow 0$ but $e^{1 / z_{n}}=-1$ for $z_{n}=1 /(2 n+1) \pi i \rightarrow 0$ as $n \rightarrow \infty$. Hence the function can have no limit as $z \rightarrow 0$.
(c) Removable singularity, since $\lim _{z \rightarrow 0}[z / \sin z]=1 / \lim _{z \rightarrow 0}[(\sin z) / z]=1$.
2. Find the residues of the following functions at the indicated points.
(a) $1 /\left(e^{z}-1\right)$ at $z=0$
(b) $z^{4} /\left(z-\frac{1}{6} z^{3}-\sin z\right)$ at $z=0$
(c) $\left.\left(z^{2}+1\right) / z^{4}-1\right)$ at $z=1$ and $z=i$.

Solution: (a) Since this is a simple pole, find the residue as follows:

$$
\lim _{z \rightarrow 0} \frac{(z-0)}{e^{z}-1}=\lim _{z \rightarrow 0} \frac{z}{z+O\left(z^{2}\right)}=\lim _{z \rightarrow 0} \frac{1}{1+O(z)}=1
$$

(b) Note that $z-\frac{1}{6} z^{3}-\sin z=-\frac{1}{120} z^{5}+O\left(z^{7}\right)$ at $z=0$. Hence $z^{4} /\left(z-\frac{1}{6} z^{3}-\sin z\right)$ has a simple pole at $z=0$. Find the residue as follows:

$$
\lim _{z \rightarrow 0} \frac{(z-0) z^{4}}{z-\frac{1}{6} z^{3}-\sin z}=\lim _{z \rightarrow 0} \frac{z^{5}}{-\frac{1}{120} z^{5}+O\left(z^{7}\right)}=\lim _{z \rightarrow 0} \frac{-120}{1+O\left(z^{2}\right)}=-120 .
$$

(c) Factor the numerator and denominator polynomials into

$$
\frac{(z-i)(z+i)}{(z-i)(z+i)(z-1)(z+1)}=\frac{1}{(z-1)(z+1)} .
$$

Hence $z=i$ (also $z=-i$) is a removable singularity, so the residue there is 0 . However, $z=1$ is a simple pole with residue $\lim _{z \rightarrow 1} \frac{(z-1)}{(z-1)(z+1)}=\frac{1}{2}$.
3. Find the residue of the function $f(z)=1 / \sinh ^{2} z$ at $z=0$.

Solution: Since $\sinh z=O(z)$ as $z \rightarrow 0$, we see that $z=0$ is a pole of order 2 for $1 / \sinh ^{2} z$. Find the residue as follows, setting $n=2$ in the formula on page 73 of our text:

$$
\begin{aligned}
\lim _{z \rightarrow z_{0}} \frac{1}{(n-1)!}\left(\frac{d}{d z}\right)^{(n-1)}\left[f(z)\left(z-z_{0}\right)^{n}\right] & =\lim _{z \rightarrow 0} \frac{d}{d z}\left[\frac{z^{2}}{\sinh ^{2} z}\right] \\
& =\lim _{z \rightarrow 0} \frac{2 z \sinh z-2 z^{2} \cosh z}{\sinh ^{3} z} \\
& =2 \lim _{z \rightarrow 0}\left[\frac{z}{\sinh z}\right]\left[\frac{\sinh z-z \cosh z}{\sinh ^{2} z}\right]
\end{aligned}
$$

L'Hôpital's rule allows us to evaluate the factor limits:

$$
\lim _{z \rightarrow 0}\left[\frac{z}{\sinh z}\right]=\lim _{z \rightarrow 0}\left[\frac{1}{\cosh z}\right]=1
$$

and

$$
\lim _{z \rightarrow 0}\left[\frac{\sinh z-z \cosh z}{\sinh ^{2} z}\right]=\lim _{z \rightarrow 0}\left[\frac{z \sinh z}{2 \sinh z \cosh z}\right]=0
$$

Hence the residue is 0 .

