
Ma 416: Complex Variables

Solutions to Homework Assignment 6

Prof. Wickerhauser

Due Thursday, October 13th, 2005

Read R. P. Boas, Invitation to Complex Analysis, Chapter 2, sections 9A–11C.

1. Evaluate the definite integral
∫ 2π
0 (2 + sin θ)−2 dθ.

Solution: Substitute z = eiθ, dz = ieiθ dθ ⇒ dθ = (1/iz) dz, and sin θ = (z − 1/z)/2i to
get ∫ 2π

0

dθ

(2 + sin θ)2
=

∮
C

dz

iz
(
2 + z−1/z

2i

)2 =
∮

C

4iz dz

(z2 + 4iz − 1)2
=

∮
C

4iz dz

(z − z+)2(z − z−)2
,

where C is the positively oriented unit circle {z = eiθ : 0 ≤ θ ≤ 2π}, and z± = (−2 ±
√

3)i
are the roots of the denominator quadratic polynomial.

Since z+ = (−2 +
√

3)i lies in the region {|z| < 1} enclosed by C, it is a pole of order 2 for
the integrand f(z) def= 4iz(z− z+)−2(z− z−)−2. The enclosed region contains no other poles
of f , since |z−| = 2 +

√
3 > 1. By the residue theorem, the integral equals 2πiRes(z+), where

Res(z+) is the residue of f at z+. Evaluate this residue with Cauchy’s formula on page 73 of
our text, with n = 2:

Res(z+) = lim
z→z+

1
(n− 1)!

(
d

dz

)(n−1)

[f(z)(z − z+)n] = lim
z→z+

d

dz

[
4iz

(z − z−)2

]
= lim

z→z+

−4i(z + z−)
(z − z−)3

=
−4i(z+ + z−)
(z+ − z−)3

=
2

3
√

3i
.

Hence 2πiRes(z+) =
4π

3
√

3
is the value of the original integral. 2

2. Evaluate the improper integral
∫∞
0 (x4 + 1)−1 dx.

Solution: Write z4 + 1 = (z2 + i)(z2 − i) = (z − z1)(z − z2)(z − z3)(z − z4), where
z1 = (1 + i)/

√
2, z2 = (−1 + i)/

√
2, z3 = (−1− i)/

√
2, and z4 = (1− i)/

√
2 are the four 4th

roots of −1.

Next, fix big R >
√

2, let C = Ch ∪ Ca ∪ Cv be the simple closed piecewise smooth quarter-
circle contour in the first quadrant consisting of the horizontal line segment Ch = {z = x :
x ∈ [0, R]}, the quarter-arc Ca = {Reiθ : 0 ≤ θ ≤ π/2}, and the vertical line segment
Cv = {z = (R− y)i : y ∈ [0, R]}. As parametrized, C has positive orientation.
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The region enclosed by C will contain the simple pole z1 of f(z) def= (z4 + 1)−1 and no other
singular points of f . Hence by the residue theorem,

∮
C f(z) dz = 2πiRes(z1), where Res(z1)

is the residue of f at z1. But since z1 is a simple pole,

Res(z1) = lim
z→z1

(z − z1)f(z) = [(z1 − z2)(z1 − z3)(z1 − z4)]−1 =
1

2i(1 + i)
√

2
.

Thus
∮
C f(z) dz =

π

(1 + i)
√

2
for any R >

√
2.

Also,
∮
C f(z) dz =

∫
Ch

f(z) dz +
∫
Ca

f(z) dz +
∮
Cv

f(z) dz, where∮
Ch

f(z) dz =
∫ R

0

dx

x4 + 1
;∮

Cv

f(z) dz =
∫ R

0

di(R− y)
(R− y)4 + 1

= −i

∫ R

0

dt

t4 + 1
, after y ← (R− t);∮

Ca

f(z) dz =
∫ π/2

0

iReiθ dθ

R4e4iθ + 1

⇒
∣∣∣∣∮

Ca

f(z) dz

∣∣∣∣ ≤ π

2
R

R4 − 1
→ 0 as R→∞.

The integral over the arc Ca must therefore vanish as R→∞, leaving

lim
R→∞

∮
C

f(z) dz = (1− i)
∫ ∞

0

dx

x4 + 1
.

The limit π/[(1 + i)
√

2] on the left-hand side is attained as soon as R >
√

2. Hence∫ ∞

0

dx

x4 + 1
=

π

(1− i)(1 + i)
√

2
=

π

2
√

2
.

2

3. Evaluate the principal value integral PV
∫∞
−∞(x3 − 1)−1 dx.

Solution: Note that f(z) def= (z3 − 1)−1 has simple poles at the three cube roots of 1,
namely z1 = e2πi/3 = (−1 + i

√
3)/2, z2 = e4πi/3 = (−1− i

√
3)/2, and z3 = e6πi/3 = 1.

Fix R > 2 and 0 < ε < 1 and consider the piecewise differentiable curve C = C1∪Cε∪C2∪CR

defined by

C1 = {z = x : −R ≤ x ≤ 1− ε};
Cε = {z = 1− εe−iθ : 0 ≤ θ ≤ π};
C2 = {z = x : 1 + ε ≤ x ≤ R};
CR = {z = Reiθ : 0 ≤ θ ≤ π}.

Then C is a simple closed curve that encloses one pole of f (namely z1), skirts within ε of
another (z3 = 1), and completely excludes the third (z2). Note that C is positively oriented.
By the residue theorem,∮

C
f(z) = 2πiRes(z1) = 2πi lim

z→z1
(z − z1)f(z) =

2πi

(z1 − z2)(z1 − z3)
=

4π

3(i−
√

3)
.
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The four path integrals comprising
∮
C f(z) dz may be written as follows:∫

C1∪C2

f(z) dz =
∫ 1−ε

−R

dx

x3 − 1
+

∫ R

1+ε

dx

x3 − 1
;∫

Cε

f(z) dz =
∫ π

0

iεe−iθ dθ

[1− εe−iθ]3 − 1
=

∫ π

0

i dθ

−3 + 3εe−iθ − ε2e−2iθ
;∫

CR

f(z) dz =
∫ π

0

iReiθ dθ

R3e3iθ − 1
.

Evidently
∫
Cε

f(z) dz → −iπ/3 as ε→ 0, and
∫
CR

f(z) dz → 0 as R→∞.

As ε → 0 and R → ∞, the path integral
∫
C1∪C2

f(z) dz converges to the principal value we
are seeking. Combining these calculations gives

PV
∫ ∞

−∞
(x3 − 1)−1 dx =

4π

3(i−
√

3)
− −iπ

3
− 0 =

−π√
3

Note that the negative values of the integrand in −∞ < x < 1 outweigh the positive values
in 1 < x <∞. 2

4. Evaluate the integral ∫ ∞

−∞

ex/n

1− ex
dx,

for n = 1, 2, 3, . . .. (Hint: use rectangular contours of fixed height 2π with one side lying on
the x-axis.)

Solution: Following the hint, fix R > 2 and 0 < ε < 1 and let C = CB ∪CεB ∪CU ∪CT ∪
CεT ∪CD be the piecewise differentiable rectangular contour with two nibbles near z = 0 and
z = 2πi defined as follows:

CB = {z = x : −R ≤ x ≤ −ε and ε ≤ x ≤ R};
CT = {z = 2πi− x : −R ≤ x ≤ −ε and ε ≤ x ≤ R};
CU = {z = R + iy : 0 ≤ y ≤ 2π};
CD = {z = −R + i(2π − y) : 0 ≤ y ≤ 2π};
CεB = {z = −εe−iθ : 0 ≤ θ ≤ π};
CεT = {z = 2πi + εe−iθ : 0 ≤ θ ≤ π}.

It may be seen that C is a simple closed curve.

For each integer n > 1, the function f(z) = ez/n/(1− ez) only has simple poles at zk = 2kπi
for any integer k, so it has no singular points in the region enclosed by C. The nibbles
CεB and CεT avoid the poles z0 = 0 and z1 = 2πi, respectively. By the residue theorem,∮
C f(z) dz = 0.

Now ∫
CB

f(z) dz =
∫ −ε

−R

ex/n dx

1− ex
+

∫ R

ε

ex/n dx

1− ex

def=
∫

I

ex/n dx

1− ex
,

where I = [−R,−ε] ∪ [ε, R]. This tends to our desired integral as R → ∞ and ε → 0. But
also,∫

CT

f(z) dz =
∫

I

e[2πi−x]/n d[2πi− x]
1− e[2πi−x]

= e2πi/n
∫

I

e−x/n d(−x)
1− e−x

= −e2πi/n
∫

I

ex/n dx

1− ex
,
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after the substitution x← −x. Thus∫
CB∪CT

f(z) dz = (1− e2πi/n)
∫

I

ex/n dx

1− ex
.

The values for
∫
CεB

f(z) dz and
∫
CεT

f(z) dz are computed as in Exercise 9.5 on pages 84–85
of our text. They are “partial residues,” exactly half the residues at z0 and z1, respectively,
and negative because the poles are outside the contour C:∫

CεB

f(z) dz = −1
2
[2πi]Res(z0) = πi;∫

CεT

f(z) dz = −1
2
[2πi]Res(z1) = e2π/nπi;

Here we have computed the residues in the usual way:

Res(z0) = Res(0) = lim
z→0

zez/n

1− ez
= −1;

Res(z1) = Res(2πi) = lim
z→2πi

(z − 2πi)ez/n

1− ez
= −e2πi/n

The remaining contour integrals may be estimated:∣∣∣∣∫
CU

f(z) dz

∣∣∣∣ ≤ ∫ 2π

0

eR/n|eiy/n| dy

|1− eReiy|
≤ 2πeR/n

eR − 1
→ 0, as R→∞;∣∣∣∣∫

CD

f(z) dz

∣∣∣∣ ≤ ∫ 0

2π

e−R/n|eiy/n| dy

|1− e−Reiy|
≤ 2πe−R/n

1− e−2
→ 0, as R→∞.

Combining these computations gives the value of the integral:∫ ∞

−∞

ex/n dx

1− ex
=
−(1 + e2πi/n)πi

1− e2πi/n
=

(e−πi/n + eπi/n)πi

−(e−πi/n − eπi/n)
= π cot(π/n).

Note that this integral must be interpreted in the principal value sense. 2

5. For each relation below, find all the complex numbers z satisfying it:

(a) zn = 1 for a fixed n ∈ {2, 3, 4, . . .}
(b) ez = −e

(c) e
√

z = i

(d) tan z = 1 + i.

Solution: (a) z ∈ {e2kπi/n : k = 1, 2, . . . , n}. There are n distinct values in this set, the n
nth roots of unity, equidistributed around the unit circle.

(b) Since −e = eiπe1 = e1+iπ and the exponential function is 2πi-periodic, the solution set is
{1 + πi + 2kπi = 1 + (2k + 1)πi : k ∈ Z}.
(c) Since eiπ/2 = i and the exponential function is 2πi-periodic, the solution set is {z2 : z =
iπ/2 + 2kπi = (2k + 1

2)πi : k ∈ Z} = {−(2k + 1
2)2π2 : k ∈ Z}.
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(d) Use the idea in the solution to Exercise 10.11 on page 95 of our text:

1 + i = tan z =
sin z

cos z
=

1
i

eiz − e−iz

eiz + e−iz

⇒ (2− i)eiz = ie−iz

⇒ e2iz =
i

2− i
= −1

5
+

2
5
i =

1√
5

(
− 1√

5
+

2√
5
i

)
.

The final expression on the right-hand side is in the form reiθ with r = 1/
√

5 and θ ∈ R
satisfying cos θ = −1/

√
5, sin θ = 2/

√
5. From this we conclude that

<(2iz) = −2=(z) = ln(r) ≈ −0.8047
⇒ =(z) ≈ 1.6094;

=(2iz) = 2<(z) = θ ∈ {arctan(−2) + π + 2kπ : k ∈ Z}
⇒ <(z) ∈ {1.0172 + kπ : k ∈ Z},

using the approximation arctan(−2) ≈ −1.1071, the principal value of arctangent which lies
in [−π

2 , π
2 ]. We must add π to this principal value to get an angle θ ≈ 2.0344 in the second

quadrant satisfying sin θ > 0, cos θ < 0. Hence the solution set may be written approximately
as {1.0172 + 1.6094i + kπ : k ∈ Z}. 2

6. Evaluate the integral ∫ ∞

0

dx

(1 + x2)
√

x
.

Solution: This is a special case of Exercise 11.1(a) on page 97 of the textbook:∫ ∞

0

xλ dx

a2 + x2
, a = 1, λ = −1

2
.

We follow the model solution on page 294 of the textbook, substituting x2 ← a2t = t to
obtain the equivalent integral

1
2
aλ−1

∫ ∞

0

t−1+(1+λ)/2 dt

1 + t
=

1
2

∫ ∞

0

t−3/4 dt

1 + t
,=

1
2

∫ ∞

0

t
1
4
−1 dt

1 + t
,

which evaluates to
1
2
aλ−1I(

1
4
) =

1
2

π

sin 1
4π

=
π√
2
,

using the notation and technique in Section 11A, pages 95–97 of the textbook. 2
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