Ma 416: Complex Variables
Solutions to Homework Assignment 7

Prof. Wickerhauser

Due Thursday, October 27, 2005

Read R. P. Boas, Invitation to Complexr Analysis, Chapter 2, sections 12A-13C.

1. Use the argument principle to count the zeros of P(z) = z* + 23 4+ 622 + 32 + 5 in the left
half-plane {2z < 0} and right half-plane {8z > 0} of the complex plane.

Solution: Since P has purely real and positive coefficients, it takes positive real values at
all z € RT. Check P(0) = 5 # 0 to conclude that P has no roots on R™ U {0}. Since the
roots of a real-coefficient polynomial must come in conjugate pairs, P must have 0, 2, or 4
real roots on R~ with its remaining roots being nonreal conjugate pairs.

Compute
P(z) = 2'4 234622432 +5;
P'(z) = 42°+322+122+3; at least one (negative) real root;
P'(z) = 1222 +62+12; nonreal roots (1 £1iv/15)/4;
P"(z) = 24z +6; real root —1/4.

If P had four negative real roots, then by Rolle’s theorem P’ would have three and P” would
have two negative real roots, which is not the case. Hence P has either two or zero real roots
in R™, which is a subset of the left half-plane {Rz < 0}.

Now localize the remaining two or four nonreal roots using the argument principle. Write
1 6 3 O\ def 4 4
(2) =2 ( +Z+Z2+Z3+Z4> z2*h(z) = arg P(z) = arg 2™ + arg h(z)

If 2 = Re® for sufficiently large R > 0, then h(z) will take values in the disk of radius 2/R
centered at 1. Hence for any € > 0 we may take R large enough so that
|arg P(z) — arg(z%)| = |arg h(2)| < €; = arg P(Re") ~ 4.

For all z = x € R we have P(z) € R, so we may take arg P(z) = 0. For z = iy € iR, we have

P(iy) = y*—iy® —6y® + 3iz +5;
P(iy) =0 = RP(iy) =y* — 64> +5 =0 and SP(iy) = —y* + 3y = 0.

But the real part has the roots +1 and £+1/5, while the imaginary part has different roots 0
and ++/3. Hence P has no roots on the imaginary axis {8z = 0}.



We now compute the argument of P(z) using inverse tangent:

SP(i 2
arg P(iy) = arctan m = arctan m.

As noted above, the real part in the denominator has four roots: y = £1 and y = /5.
The imaginary part in the numerator has three roots: y = 0 and y = +v/3. We may use
this to determine which branches to use in order to have a continuous argument function
0 = arg P(z) along the positive imaginary axis z = iy:

SP(iy)

Y tanf = RP(y) Quadrant of § 6 = arg P(iy)
Near +o0 —/+=- v Near 27
400>y >+5 —/+=- v 2 > 60 > 31/2
y =5 —/0=—00 IV to II 3m/2
V5 >y >3 —/—= III 3r/2>60>7
y =13 0/— = II1 to 11 w
V3 >y >1 +/—=- 11 T>0>7/2
y=1 +/0 = +o0 ITtol /2
1>y>0 +/+=+ I w/2>60>0
=0 0/+ =0 I 0

From this table we conclude that it is possible to define a continous function arg P(z) along
the positively-oriented simple closed curve

cr % [0, RluCy ULiR, 0],
where Cg is the quarter-circle from R to ¢R in Quadrant I, and R is sufficiently large. But
then the argument principle implies that P(z) has no zeros in Quadrant I.

Since the zeros of P come in complex conjugate pairs, the preceding argument also implies
that P has no zeros in Quadrant IV. We conclude that P has no roots in the right half-plane
{Rz > 0}, and thus has four roots in the left half plane {Rz < 0}. O

z/2

. Use Rouché’s theorem to determine the number of zeros of 3e*/* + z satisfying |z| < 1.

Solution: Let g(z) = z and f(z) = 3¢*/2, and let C' = {z = cost +isint} be the positively
oriented unit circle. We claim that |g(z)| < |f(2)| on C, since

|£(2)] = 3JeMHi02/2) = 31eRe/2) = 3e(0s0)/2 > 3e71/2 > 1,

while |g(z)| = |z| = 1. Thus Rouché’s theorem applies: f and f + ¢g have the same number
of zeros inside C. But f(z) has no zeros anywhere, so there are no zeros of the function
f(2) + g(z) = 3¢*/? + z inside the circle C. O

. Suppose {fn, : n = 1,2,...} is an infinite sequence of analytic functions that converges uni-
formly in all compact subsets of a region D containing 0.

(a) Show that {exp(f,):n =1,2,...} is also an infinite sequence of analytic functions that
converges uniformly in each compact subset of D.

(b) Show that if lim,, .~ exp(f,(0)) = 0, then lim,_,~ exp(fn(2z)) =0 for all z € D.



Solution: (a) First note that exp(g(z)) is analytic whenever g(z) is analytic, simply by
using the chain rule: [exp(g(z))]’ = ¢'(z)exp(g(z)). Both products and compositions of
analytic functions are analytic.

Next, let f(z) = lim, oo fn(z) for each z € D. If f, — f uniformly in some compact subset
K C D, then exp(f,) — exp(f) uniformly in K as well:

|exp(fn(2)) —exp(f(2))] < Clfulz) = f(2)],  allz€ K,

where C' is any constant larger than all values of |f’(z) exp(f(2))| in K.

(b) Since exp(fn(2)) has no zeros in D, and exp(f,) converges uniformly in each compact
subset of D, we may apply Hurwitz’s theorem: either lim,,_,~, exp(f,(2)) is never zero for any
z € D, or else lim,, o exp(fn(z)) =0 for all z € D. But 0 € D and lim,,_,~ exp(f,(0)) = 0,
so we conclude that lim, .~ exp(f,(z)) =0 for all z € D. O

. Is it possible for a function f = f(z) which takes only purely imaginary values to be analytic
on {|z] < 1}?

Solution:  The region D = {|z| < 1} is an open set in C, but no subset I of the imaginary
axis can be an open set in C. By the Open Mapping Theorem, if f : D — [ is an analytic
function, then it must be constant. Hence it is possible for analytic f to take only purely
imaginary values on D, as long as f takes just one purely imaginary value. O

. Show that f(z) = z/(1 — 2)? is univalent in |z| < 1.

Solution:  Use direct computation. Let D = {z : |z] < 1} be the open unit disk and
suppose z,w belong to D with f(z) = f(w). If z = 0 then f(2) = 0, so f(w) = 0, so
w = 0 = z. Otherwise z # 0, so

12?2 (1-w)?

=w(l—2)>%=z201-w)?= 20—+ D)w+2=0.

This may be regarded as a quadratic equation for w with coefficients determined by z # 0.
Its roots are

24+1+/(Z2+1)2—-422 22414 (22-1)

o = 1 .

Of these two possible roots, w = 1/z cannot satisfy |w| < 1 since |z| < 1. Hence we conclude
that w = z. But f(2) = f(w) = w = z for all z,w € D is the definition of univalence in D
for f. O

. Prove that the converse to Darboux’s theorem is false: Find a simple closed curve S and an
analytic function f = f(z) such that f is univalent inside S but not univalent on S.

Solution:  This is Exercise 13.5 on page 115 of our textbook. The function f(z) = 22 is

univalent in the open half-disk D = {z : |z| < 1,0 < arg(z) < 7}, since the argument of 22

will lie entirely within the principal range (0,27). But D is bounded by the simple closed
curve S = {e?:0<t<m}U{t:-1<t<1},and 2 =—1¢€ S and z = 1 € S both satisfy
2

z¢=1. O



