
Ma 416: Complex Variables

Solutions to Homework Assignment 7

Prof. Wickerhauser

Due Thursday, October 27, 2005

Read R. P. Boas, Invitation to Complex Analysis, Chapter 2, sections 12A–13C.

1. Use the argument principle to count the zeros of P (z) = z4 + z3 + 6z2 + 3z + 5 in the left
half-plane {<z < 0} and right half-plane {<z > 0} of the complex plane.

Solution: Since P has purely real and positive coefficients, it takes positive real values at
all z ∈ R+. Check P (0) = 5 6= 0 to conclude that P has no roots on R+ ∪ {0}. Since the
roots of a real-coefficient polynomial must come in conjugate pairs, P must have 0, 2, or 4
real roots on R− with its remaining roots being nonreal conjugate pairs.

Compute

P (z) = z4 + z3 + 6z2 + 3z + 5;
P ′(z) = 4z3 + 3z2 + 12z + 3; at least one (negative) real root;
P ′′(z) = 12z2 + 6z + 12; nonreal roots (1± i

√
15)/4;

P ′′′(z) = 24z + 6; real root −1/4.

If P had four negative real roots, then by Rolle’s theorem P ′ would have three and P ′′ would
have two negative real roots, which is not the case. Hence P has either two or zero real roots
in R−, which is a subset of the left half-plane {<z < 0}.
Now localize the remaining two or four nonreal roots using the argument principle. Write

P (z) = z4
(

1 +
1
z

+
6
z2

+
3
z3

+
5
z4

)
def= z4h(z); ⇒ arg P (z) = arg z4 + arg h(z).

If z = Reiθ for sufficiently large R > 0, then h(z) will take values in the disk of radius 2/R
centered at 1. Hence for any ε > 0 we may take R large enough so that

| arg P (z)− arg(z4)| = | arg h(z)| < ε; ⇒ arg P (Reiθ) ≈ 4θ.

For all z = x ∈ R we have P (z) ∈ R, so we may take arg P (z) = 0. For z = iy ∈ iR, we have

P (iy) = y4 − iy3 − 6y2 + 3iz + 5;
P (iy) = 0 ⇒ <P (iy) = y4 − 6y2 + 5 = 0 and =P (iy) = −y3 + 3y = 0.

But the real part has the roots ±1 and ±
√

5, while the imaginary part has different roots 0
and ±

√
3. Hence P has no roots on the imaginary axis {<z = 0}.
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We now compute the argument of P (z) using inverse tangent:

arg P (iy) = arctan
=P (iy)
<P (iy)

= arctan
y(3− y2)

y4 − 6y2 + 5
.

As noted above, the real part in the denominator has four roots: y = ±1 and y = ±
√

5.
The imaginary part in the numerator has three roots: y = 0 and y = ±

√
3. We may use

this to determine which branches to use in order to have a continuous argument function
θ = arg P (z) along the positive imaginary axis z = iy:

y tan θ = =P (iy)
<P (iy) Quadrant of θ θ = arg P (iy)

Near +∞ −/+ = − IV Near 2π

+∞ > y >
√

5 −/+ = − IV 2π > θ > 3π/2
y =

√
5 −/0 = −∞ IV to III 3π/2√

5 > y >
√

3 −/− = + III 3π/2 > θ > π

y =
√

3 0/− = 0 III to II π√
3 > y > 1 +/− = − II π > θ > π/2
y = 1 +/0 = +∞ II to I π/2

1 > y > 0 +/+ = + I π/2 > θ > 0
y = 0 0/+ = 0 I 0

From this table we conclude that it is possible to define a continous function arg P (z) along
the positively-oriented simple closed curve

CI
def= [0, R] ∪ C+

R ∪ [iR, 0],

where C+
R is the quarter-circle from R to iR in Quadrant I, and R is sufficiently large. But

then the argument principle implies that P (z) has no zeros in Quadrant I.

Since the zeros of P come in complex conjugate pairs, the preceding argument also implies
that P has no zeros in Quadrant IV. We conclude that P has no roots in the right half-plane
{<z > 0}, and thus has four roots in the left half plane {<z < 0}. 2

2. Use Rouché’s theorem to determine the number of zeros of 3ez/2 + z satisfying |z| < 1.

Solution: Let g(z) = z and f(z) = 3ez/2, and let C = {z = cos t+ i sin t} be the positively
oriented unit circle. We claim that |g(z)| < |f(z)| on C, since

|f(z)| = 3|e(<z+i=z)/2| = 3|e<z/2| = 3e(cos t)/2 ≥ 3e−1/2 > 1,

while |g(z)| = |z| = 1. Thus Rouché’s theorem applies: f and f + g have the same number
of zeros inside C. But f(z) has no zeros anywhere, so there are no zeros of the function
f(z) + g(z) = 3ez/2 + z inside the circle C. 2

3. Suppose {fn : n = 1, 2, . . .} is an infinite sequence of analytic functions that converges uni-
formly in all compact subsets of a region D containing 0.

(a) Show that {exp(fn) : n = 1, 2, . . .} is also an infinite sequence of analytic functions that
converges uniformly in each compact subset of D.

(b) Show that if limn→∞ exp(fn(0)) = 0, then limn→∞ exp(fn(z)) = 0 for all z ∈ D.
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Solution: (a) First note that exp(g(z)) is analytic whenever g(z) is analytic, simply by
using the chain rule: [exp(g(z))]′ = g′(z) exp(g(z)). Both products and compositions of
analytic functions are analytic.

Next, let f(z) = limn→∞ fn(z) for each z ∈ D. If fn → f uniformly in some compact subset
K ⊂ D, then exp(fn) → exp(f) uniformly in K as well:

| exp(fn(z))− exp(f(z))| ≤ C|fn(z)− f(z)|, all z ∈ K,

where C is any constant larger than all values of |f ′(z) exp(f(z))| in K.

(b) Since exp(fn(z)) has no zeros in D, and exp(fn) converges uniformly in each compact
subset of D, we may apply Hurwitz’s theorem: either limn→∞ exp(fn(z)) is never zero for any
z ∈ D, or else limn→∞ exp(fn(z)) = 0 for all z ∈ D. But 0 ∈ D and limn→∞ exp(fn(0)) = 0,
so we conclude that limn→∞ exp(fn(z)) = 0 for all z ∈ D. 2

4. Is it possible for a function f = f(z) which takes only purely imaginary values to be analytic
on {|z| < 1}?

Solution: The region D = {|z| < 1} is an open set in C, but no subset I of the imaginary
axis can be an open set in C. By the Open Mapping Theorem, if f : D → I is an analytic
function, then it must be constant. Hence it is possible for analytic f to take only purely
imaginary values on D, as long as f takes just one purely imaginary value. 2

5. Show that f(z) = z/(1− z)2 is univalent in |z| < 1.

Solution: Use direct computation. Let D = {z : |z| < 1} be the open unit disk and
suppose z, w belong to D with f(z) = f(w). If z = 0 then f(z) = 0, so f(w) = 0, so
w = 0 = z. Otherwise z 6= 0, so

z

(1− z)2
=

w

(1− w)2
⇒ w(1− z)2 = z(1− w)2 ⇒ zw2 − (z2 + 1)w + z = 0.

This may be regarded as a quadratic equation for w with coefficients determined by z 6= 0.
Its roots are

w =
z2 + 1±

√
(z2 + 1)2 − 4z2

2z
=

z2 + 1± (z2 − 1)
2z

∈ {z, 1/z}.

Of these two possible roots, w = 1/z cannot satisfy |w| < 1 since |z| < 1. Hence we conclude
that w = z. But f(z) = f(w) ⇒ w = z for all z, w ∈ D is the definition of univalence in D
for f . 2

6. Prove that the converse to Darboux’s theorem is false: Find a simple closed curve S and an
analytic function f = f(z) such that f is univalent inside S but not univalent on S.

Solution: This is Exercise 13.5 on page 115 of our textbook. The function f(z) = z2 is
univalent in the open half-disk D = {z : |z| < 1, 0 < arg(z) < π}, since the argument of z2

will lie entirely within the principal range (0, 2π). But D is bounded by the simple closed
curve S = {eit : 0 ≤ t ≤ π} ∪ {t : −1 ≤ t ≤ 1}, and z = −1 ∈ S and z = 1 ∈ S both satisfy
z2 = 1. 2
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