Ma 416: Complex Variables Solutions to Homework Assignment 7

Prof. Wickerhauser

Due Thursday, October 27, 2005

Read R. P. Boas, Invitation to Complex Analysis, Chapter 2, sections 12A-13C.

1. Use the argument principle to count the zeros of $P(z)=z^{4}+z^{3}+6 z^{2}+3 z+5$ in the left half-plane $\{\Re z<0\}$ and right half-plane $\{\Re z>0\}$ of the complex plane.

Solution: \quad Since P has purely real and positive coefficients, it takes positive real values at all $z \in \mathbf{R}^{+}$. Check $P(0)=5 \neq 0$ to conclude that P has no roots on $\mathbf{R}^{+} \cup\{0\}$. Since the roots of a real-coefficient polynomial must come in conjugate pairs, P must have 0,2 , or 4 real roots on \mathbf{R}^{-}with its remaining roots being nonreal conjugate pairs.
Compute

$$
\begin{aligned}
P(z) & =z^{4}+z^{3}+6 z^{2}+3 z+5 ; \\
P^{\prime}(z) & =4 z^{3}+3 z^{2}+12 z+3 ; \quad \text { at least one (negative) real root; } \\
P^{\prime \prime}(z) & =12 z^{2}+6 z+12 ; \quad \text { nonreal roots }(1 \pm i \sqrt{15}) / 4 ; \\
P^{\prime \prime \prime}(z) & =24 z+6 ; \quad \text { real root }-1 / 4 .
\end{aligned}
$$

If P had four negative real roots, then by Rolle's theorem P^{\prime} would have three and $P^{\prime \prime}$ would have two negative real roots, which is not the case. Hence P has either two or zero real roots in \mathbf{R}^{-}, which is a subset of the left half-plane $\{\Re z<0\}$.
Now localize the remaining two or four nonreal roots using the argument principle. Write

$$
P(z)=z^{4}\left(1+\frac{1}{z}+\frac{6}{z^{2}}+\frac{3}{z^{3}}+\frac{5}{z^{4}}\right) \stackrel{\text { def }}{=} z^{4} h(z) ; \quad \Rightarrow \arg P(z)=\arg z^{4}+\arg h(z) .
$$

If $z=R e^{i \theta}$ for sufficiently large $R>0$, then $h(z)$ will take values in the disk of radius $2 / R$ centered at 1 . Hence for any $\epsilon>0$ we may take R large enough so that

$$
\left|\arg P(z)-\arg \left(z^{4}\right)\right|=|\arg h(z)|<\epsilon ; \quad \Rightarrow \arg P\left(R e^{i \theta}\right) \approx 4 \theta .
$$

For all $z=x \in \mathbf{R}$ we have $P(z) \in \mathbf{R}$, so we may take $\arg P(z)=0$. For $z=i y \in i \mathbf{R}$, we have

$$
\begin{aligned}
P(i y) & =y^{4}-i y^{3}-6 y^{2}+3 i z+5 ; \\
P(i y)=0 & \Rightarrow \Re P(i y)=y^{4}-6 y^{2}+5=0 \text { and } \Im P(i y)=-y^{3}+3 y=0 .
\end{aligned}
$$

But the real part has the roots ± 1 and $\pm \sqrt{5}$, while the imaginary part has different roots 0 and $\pm \sqrt{3}$. Hence P has no roots on the imaginary axis $\{\Re z=0\}$.

We now compute the argument of $P(z)$ using inverse tangent:

$$
\arg P(i y)=\arctan \frac{\Im P(i y)}{\Re P(i y)}=\arctan \frac{y\left(3-y^{2}\right)}{y^{4}-6 y^{2}+5}
$$

As noted above, the real part in the denominator has four roots: $y= \pm 1$ and $y= \pm \sqrt{5}$. The imaginary part in the numerator has three roots: $y=0$ and $y= \pm \sqrt{3}$. We may use this to determine which branches to use in order to have a continuous argument function $\theta=\arg P(z)$ along the positive imaginary axis $z=i y$:

y	$\tan \theta=\frac{\Im P(i y)}{\Re P(i y)}$	Quadrant of θ	$\theta=\arg P(i y)$
Near $+\infty$	$-/+=-$	IV	Near 2π
$+\infty>y>\sqrt{5}$	$-/+=-$	IV	$2 \pi>\theta>3 \pi / 2$
$y=\sqrt{5}$	$-/ 0=-\infty$	IV to III	$3 \pi / 2$
$\sqrt{5}>y>\sqrt{3}$	$-/-=+$	III	$3 \pi / 2>\theta>\pi$
$y=\sqrt{3}$	$0 /-=0$	III to II	π
$\sqrt{3}>y>1$	$+/-=-$	II	$\pi>\theta>\pi / 2$
$y=1$	$+/ 0=+\infty$	II to I	$\pi / 2$
$1>y>0$	$+/+=+$	I	$\pi / 2>\theta>0$
$y=0$	$0 /+=0$	I	0

From this table we conclude that it is possible to define a continous function $\arg P(z)$ along the positively-oriented simple closed curve

$$
C_{I} \stackrel{\text { def }}{=}[0, R] \cup C_{R}^{+} \cup[i R, 0],
$$

where C_{R}^{+}is the quarter-circle from R to $i R$ in Quadrant I, and R is sufficiently large. But then the argument principle implies that $P(z)$ has no zeros in Quadrant I.

Since the zeros of P come in complex conjugate pairs, the preceding argument also implies that P has no zeros in Quadrant IV. We conclude that P has no roots in the right half-plane $\{\Re z>0\}$, and thus has four roots in the left half plane $\{\Re z<0\}$.
2. Use Rouché's theorem to determine the number of zeros of $3 e^{z / 2}+z$ satisfying $|z|<1$.

Solution: Let $g(z)=z$ and $f(z)=3 e^{z / 2}$, and let $C=\{z=\cos t+i \sin t\}$ be the positively oriented unit circle. We claim that $|g(z)|<|f(z)|$ on C, since

$$
|f(z)|=3\left|e^{(\Re z+i \Im z) / 2}\right|=3\left|e^{\Re z / 2}\right|=3 e^{(\cos t) / 2} \geq 3 e^{-1 / 2}>1
$$

while $|g(z)|=|z|=1$. Thus Rouché's theorem applies: f and $f+g$ have the same number of zeros inside C. But $f(z)$ has no zeros anywhere, so there are no zeros of the function $f(z)+g(z)=3 e^{z / 2}+z$ inside the circle C.
3. Suppose $\left\{f_{n}: n=1,2, \ldots\right\}$ is an infinite sequence of analytic functions that converges uniformly in all compact subsets of a region D containing 0 .
(a) Show that $\left\{\exp \left(f_{n}\right): n=1,2, \ldots\right\}$ is also an infinite sequence of analytic functions that converges uniformly in each compact subset of D.
(b) Show that if $\lim _{n \rightarrow \infty} \exp \left(f_{n}(0)\right)=0$, then $\lim _{n \rightarrow \infty} \exp \left(f_{n}(z)\right)=0$ for all $z \in D$.

Solution: (a) First note that $\exp (g(z))$ is analytic whenever $g(z)$ is analytic, simply by using the chain rule: $[\exp (g(z))]^{\prime}=g^{\prime}(z) \exp (g(z))$. Both products and compositions of analytic functions are analytic.
Next, let $f(z)=\lim _{n \rightarrow \infty} f_{n}(z)$ for each $z \in D$. If $f_{n} \rightarrow f$ uniformly in some compact subset $K \subset D$, then $\exp \left(f_{n}\right) \rightarrow \exp (f)$ uniformly in K as well:

$$
\left|\exp \left(f_{n}(z)\right)-\exp (f(z))\right| \leq C\left|f_{n}(z)-f(z)\right|, \quad \text { all } z \in K,
$$

where C is any constant larger than all values of $\left|f^{\prime}(z) \exp (f(z))\right|$ in K.
(b) Since $\exp \left(f_{n}(z)\right)$ has no zeros in D, and $\exp \left(f_{n}\right)$ converges uniformly in each compact subset of D, we may apply Hurwitz's theorem: either $\lim _{n \rightarrow \infty} \exp \left(f_{n}(z)\right)$ is never zero for any $z \in D$, or else $\lim _{n \rightarrow \infty} \exp \left(f_{n}(z)\right)=0$ for all $z \in D$. But $0 \in D$ and $\lim _{n \rightarrow \infty} \exp \left(f_{n}(0)\right)=0$, so we conclude that $\lim _{n \rightarrow \infty} \exp \left(f_{n}(z)\right)=0$ for all $z \in D$.
4. Is it possible for a function $f=f(z)$ which takes only purely imaginary values to be analytic on $\{|z|<1\}$?

Solution: The region $D=\{|z|<1\}$ is an open set in \mathbf{C}, but no subset I of the imaginary axis can be an open set in \mathbf{C}. By the Open Mapping Theorem, if $f: D \rightarrow I$ is an analytic function, then it must be constant. Hence it is possible for analytic f to take only purely imaginary values on D, as long as f takes just one purely imaginary value.
5. Show that $f(z)=z /(1-z)^{2}$ is univalent in $|z|<1$.

Solution: Use direct computation. Let $D=\{z:|z|<1\}$ be the open unit disk and suppose z, w belong to D with $f(z)=f(w)$. If $z=0$ then $f(z)=0$, so $f(w)=0$, so $w=0=z$. Otherwise $z \neq 0$, so

$$
\frac{z}{(1-z)^{2}}=\frac{w}{(1-w)^{2}} \Rightarrow w(1-z)^{2}=z(1-w)^{2} \Rightarrow z w^{2}-\left(z^{2}+1\right) w+z=0 .
$$

This may be regarded as a quadratic equation for w with coefficients determined by $z \neq 0$. Its roots are

$$
w=\frac{z^{2}+1 \pm \sqrt{\left(z^{2}+1\right)^{2}-4 z^{2}}}{2 z}=\frac{z^{2}+1 \pm\left(z^{2}-1\right)}{2 z} \in\{z, 1 / z\} .
$$

Of these two possible roots, $w=1 / z$ cannot satisfy $|w|<1$ since $|z|<1$. Hence we conclude that $w=z$. But $f(z)=f(w) \Rightarrow w=z$ for all $z, w \in D$ is the definition of univalence in D for f.
6. Prove that the converse to Darboux's theorem is false: Find a simple closed curve S and an analytic function $f=f(z)$ such that f is univalent inside S but not univalent on S.

Solution: This is Exercise 13.5 on page 115 of our textbook. The function $f(z)=z^{2}$ is univalent in the open half-disk $D=\{z:|z|<1,0<\arg (z)<\pi\}$, since the argument of z^{2} will lie entirely within the principal range $(0,2 \pi)$. But D is bounded by the simple closed curve $S=\left\{e^{i t}: 0 \leq t \leq \pi\right\} \cup\{t:-1 \leq t \leq 1\}$, and $z=-1 \in S$ and $z=1 \in S$ both satisfy $z^{2}=1$.

