Ma 416: Complex Variables Solutions to Homework Assignment 8

Prof. Wickerhauser

Due Thursday, November 3, 2005

Read R. P. Boas, Invitation to Complex Analysis, Chapter 2, sections 14A–15F.

1. Find the Laurent series (in powers of (z - 0)) in the punctured disk 0 < |z| < 1/4 and in the annulus 1/4 < |z| for the function $f(z) = z^{-2}(4z - 1)^{-1}$.

Solution: In the punctured disk 0 < |z| < 1/4, write

$$f(z) = \frac{1}{z^2(4z-1)} = \frac{1}{z^2} \sum_{n=0}^{\infty} (-4^n) z^n = -16 \sum_{n=-2}^{\infty} 4^n z^n.$$

It is clear that the radius of convergence is 1/4 and that there is a pole of order 2 at z = 0.

In the annulus |z| > 1/4, write

$$f(z) = \frac{1}{z^2(4z-1)} = \frac{1/z^3}{(4-1/z)} = \frac{64}{[4z]^3} \frac{1}{4(1-1/[4z])} = \frac{16}{[4z]^3} \sum_{n=0}^{\infty} \frac{1}{[4z]^n} = \sum_{n=3}^{\infty} \frac{16}{[4z]^n}.$$

It is clear that this series converges for all |z| > 1/4.

2. Find three terms of the Maclaurin series for $f(z) = e^{-z} \sin z$, valid in some disk centered at zero.

Solution: Multiply the first few terms of the Maclaurin series for the factor functions of f(z), $e^{-z} = 1 - z + z^2/2 + \cdots$ and $\sin z = z - z^3/6 + \cdots$, to obtain the first three terms of the Maclaurin series for their product:

$$f(z) = (1 \cdot z) + (-z \cdot z) + (1 \cdot [-\frac{z^3}{6}] + \frac{z^2}{2} \cdot z) + \dots = z - z^2 + \frac{z^2}{3} + \dots,$$

where the ellided terms are of degree 4 or higher.

3. Find the Laurent series for $f(z) = e^{z}/(1-z)$ valid in a punctured neighborhood of ∞ .

Solution: The Maclaurin series for e^z converges in all of **C**, which contains every punctured neighborhood of ∞ . Thus it suffices to find a Laurent series for $(1-z)^{-1}$ that converges in the complement of some disk and multiply the two series together. But

$$\frac{1}{1-z} = \frac{1}{z} \times \frac{-1}{1-1/z} = -\sum_{n=1}^{\infty} \frac{1}{z^n},$$

 \mathbf{SO}

$$\frac{e^z}{1-z} = -\sum_{m=0}^{\infty} \frac{z^m}{m!} \sum_{n=1}^{\infty} \frac{1}{z^n} = -\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \frac{z^{m-n}}{m!}.$$

This may be rearranged (since it converges absolutely in the complement of the unit disk) by substituting $j \leftarrow m - n$ and noting that the new summation ranges are $-\infty < j < \infty$ and $\max(0, j + 1) \le m < \infty$:

$$\frac{e^{z}}{1-z} = -\sum_{j=-\infty}^{-1} \left(\sum_{m=0}^{\infty} \frac{1}{m!}\right) z^{j} - \sum_{j=0}^{\infty} \left(\sum_{m=j+1}^{\infty} \frac{1}{m!}\right) z^{j} = -e \sum_{j=-\infty}^{-1} z^{j} - \sum_{j=0}^{\infty} \left(e - \sum_{m=0}^{j} \frac{1}{m!}\right) z^{j},$$

since $\sum_{m=0}^{\infty} 1/m! = e$ and $\sum_{m=j+1}^{\infty} 1/m! = e - \sum_{m=0}^{j} 1/m!.$

4. Find three terms of the Laurent series for $f(z) = e^z / \sin z$ valid in some punctured disk centered at zero.

Solution: Since the function f has a pole of order 1 at z = 0, its Laurent series in a punctured disk centered at 0 will be of the form $f(z) = az^{-1} + b + cz + \cdots$. We compute the terms of degree -1, 0, 1. Note that

$$e^{z} = 1 + z + \frac{z^{2}}{2} + \dots;$$
 $\sin z = z - \frac{z^{3}}{6} + \frac{z^{5}}{120} - \dots,$

so we may find equations for the undetermined coefficients a, b, c: $e^{z} = (\sin z)f(z)$, so

$$1 + z + \frac{z^2}{2} + \dots = (z - \frac{z^3}{6} + \frac{z^5}{120} - \dots)(az^{-1} + b + cz + \dots) = a + bz + (c - \frac{a}{6})z^2 + \dots,$$

so a = 1, b = 1, and c = 2/3. This yields $f(z) = z^{-1} + 1 + \frac{2}{3}z + \cdots$.

5. Use Laurent series to find the residue of $f(z) = z^{-6}e^{z^2} \tan z$ at z = 0.

Solution: Use the Maclaurin series

$$e^{z^{2}} = \sum_{n=0}^{\infty} \frac{z^{2n}}{n!} = 1 + z^{2} + \frac{1}{2}z^{4} + \frac{1}{6}z^{6} + \cdots, \quad \text{and}$$

$$\tan z = \sum_{n=1}^{\infty} \frac{B_{2n}}{(2n)!} (1 - 2^{2n})2^{2n} (-1)^{n} z^{2n-1} = z + \frac{1}{3}z^{3} + \frac{2}{15}z^{5} + \frac{17}{315}z^{7} + \cdots.$$

Hence we may multiply these series together, and then multiply them by z^{-6} , to find the Laurent series for f. In fact, we only need the coefficient c_{-1} of z^{-1} , since that is the residue of f at z = 0. But that will be the coefficient of z^5 in the product $e^{z^2} \tan z$, which may be computed as follows:

$$(1+z^2+\frac{1}{2}z^4+\cdots)(z+\frac{1}{3}z^3+\frac{2}{15}z^5+\cdots)=\cdots+(\frac{2}{15}+\frac{1}{3}+\frac{1}{2})z^5+\cdots,$$

so $c_{-1} = 29/30$ is the residue of f at 0.

6. Find four terms in the Maclaurin series of $\sin(\sin z)$.

Solution: First note that

$$\sin z = z - \frac{z^3}{6} + \frac{z^5}{120} - \frac{z^7}{5040} + \cdots,$$

so that the composition $\sin(\sin z)$ has expansion

$$\left(z - \frac{z^3}{6} + \frac{z^5}{120} - \frac{z^7}{5040} + \cdots\right) - \frac{1}{6}\left(z - \frac{z^3}{6} + \frac{z^5}{120} - \cdots\right)^3 + \frac{1}{120}\left(z - \frac{z^3}{6} + \cdots\right)^5 + \cdots$$

But

$$(z - \frac{z^3}{6} + \frac{z^5}{120} - \cdots)^3 = z^3 - 3\frac{z^5}{6} + 3\frac{z^7}{120} + \cdots;$$
$$(z - \frac{z^3}{6} + \cdots)^5 = z^5 - 5\frac{z^7}{6} + \cdots,$$

 \mathbf{SO}

$$\sin(\sin z) = z - (\frac{1}{6} + \frac{1}{6})z^3 + (\frac{1}{120} + \frac{1}{12} + \frac{1}{120})z^5 - (\frac{1}{5040} + \frac{1}{240} + \frac{1}{144})z^7 + \cdots$$
$$= z - \frac{1}{3}z^3 + \frac{1}{10}z^5 - \frac{57}{5040}z^7 + \cdots$$

	_	