Ma 416: Complex Variables Solutions to Homework Assignment 9

Prof. Wickerhauser

Due Thursday, November 10th, 2005

Read R. P. Boas, Invitation to Complex Analysis, Chapter 2, sections 16A-16C.

1. Suppose f is analytic on the closed unit disk, $f(0)=0$, and $|f(z)| \leq\left|e^{z}\right|$ whenever $|z|=1$. How big can $f((1+i) / 2)$ be?

Solution: Note that $|f(z)| \leq \max \left\{\left|e^{z}\right|:|z|=1\right\} \leq \max \left\{\left|e^{\cos \theta}\right|: \theta \in[0,2 \pi]\right\}=e$. By the Schwartz lemma, $|f(z)| \leq e|z|$ for any z in the closed unit disk. Therefore, $|f((1+i) / 2)| \leq e|(1+i) / 2|=e / \sqrt{2}$.
2. Prove Schwarz's lemma for a disk of radius R : If f is analytic on a closed disk D of radius R centered at $z_{0}, f\left(z_{0}\right)=0$, and $|f(z)| \leq M$ on the boundary circle of D, then $|f(z)| \leq\left|z-z_{0}\right| M / R$ for each z inside D, with equality holding at some interior point z if and only if $f(z)=e^{i c}\left(z-z_{0}\right)$ for some constant $c \in \mathbf{R}$.

Solution: This follows from Schwarz's lemma for a disk of radius 1, as stated on page 133 of our text, applied to the analytic function $g(z) \stackrel{\text { def }}{=} f\left(R z+z_{0}\right)$. Evidently, g is analytic in a closed disk Δ of radius 1 centered at 0 and satisfies $g(0)=f\left(z_{0}\right)=0$. If $|f(z)| \leq M$ on the boundary circle of D, then $|g(z)| \leq M$ on the boundary circle of Δ. Apply the radius-1 Schwarz lemma to conclude that

$$
\left|f\left(R z+z_{0}\right)\right|=|g(z)| \leq M|z|, \quad \Rightarrow|f(w)| \leq \frac{M}{R}\left|w-z_{0}\right|
$$

after the substitution $z \leftarrow\left(w-z_{0}\right) / R$. Equality holds if and only if $g(z)=M e^{i c} z$ if and only if $f(w)=M e^{i c}\left(w-z_{0}\right) / R$ for some $c \in \mathbf{R}$.
It remains to prove the radius-1, center-0 Schwarz lemma for g. So let $h(z)=g(z) / z$; then h is analytic in the closed unit disk Δ since it has a removable singularity at $z=0$. By the Maximum Modulus Theorem, $|h(z)|$ attains its maximum somewhere on the boundary unit circle of Δ. Call this maximum absolute value M; then

$$
|h(z)| \leq M \Rightarrow|g(z)| \leq M|z|
$$

for all $z \in D$.
3. Use the radius- R Schwarz lemma of Problem 2 to prove Liouville's theorem. (Hint: apply the lemma to $f(z)-f(0)$.)

Solution: If f is entire analytic and bounded, then so is $g(z) \stackrel{\text { def }}{=} f(z)-f(0)$: if M is an upper bound for f, so $|f(z)| \leq M$ for all $z \in \mathbf{C}$, then

$$
|g(z)| \leq|f(z)|+|f(0)| \leq M+|f(0)| \stackrel{\text { def }}{=} M^{\prime}<\infty
$$

and of course $g^{\prime}(z)=f^{\prime}(z)$ for any $z \in \mathbf{C}$. Note that $g(0)=0$.
For any $R>0$, let D_{R} be the disk of radius R centered at 0 . By the radius- R Schwarz lemma, for any $z \in D_{R}$,

$$
|g(z)-g(0)|=|g(z)| \leq|z| \frac{M^{\prime}}{R} \quad \Rightarrow 0 \leq\left|\frac{g(z)-g(0)}{z}\right| \leq \frac{M^{\prime}}{R} .
$$

But as $R \rightarrow \infty$, the right-hand side tends to 0 . We conclude that $g(z)=g(0)=0$ for every $z \neq 0$. But then $f(z)=f(0)$ for every $z \neq 0$, so f must be constant.
4. Prove that an entire function whose real part is bounded must be constant. (Hint: apply Liouville's theorem to the function e^{f}.)

Solution: \quad Suppose f is entire analytic and $|\Re f(z)| \leq M$ for all $z \in \mathbf{C}$. Then $g(z) \stackrel{\text { def }}{=} e^{f(z)}$ is entire analytic as well, since $g^{\prime}(z)=e^{f(z)} f^{\prime}(z)$ by the chain rule. But

$$
|g(z)|=\left|e^{\Re f(z)}\right| \times\left|e^{i \Im f(z)}\right|=\left|e^{\Re f(z)}\right| \leq e^{M}
$$

so g is bounded. By Liouville's theorem, g must be constant. Since f is continuous and $e^{f}=g$, we conclude that f must be constant.
5. Suppose that f is analytic on the closed unit disk, $f(0)=0$, and $|\Re f(z)| \leq\left|e^{z}\right|$ for $|z|<1$. Can $f((1+i) / 2)$ be 18 ?

Solution: Note that $A(r) \stackrel{\text { def }}{=} \max \{|\Re f(z)|:|z|=r\}=e^{r}$ for each $0 \leq r<1$. Using Carathéodory's inequality for f gives:

$$
\left|f\left(r e^{i \theta}\right)\right| \leq|f(0)|+\frac{2 r}{1-r}[A(1)-\Re f(0)] \leq \frac{2 r}{1-r}[e+1]
$$

since $f(0)=0, A(1)=e$, and $\Re f(0) \geq-A(0)=-1$. Writing $(1+i) / 2=\frac{1}{\sqrt{2}} e^{i \pi / 4}$ identifies $r=1 / \sqrt{2}$, giving the estimate

$$
|f((1+i) / 2)| \leq \frac{2 / \sqrt{2}}{1-1 / \sqrt{2}}[e+1]=\frac{2}{\sqrt{2}-1}[e+1] \approx 17.95
$$

so $f((1+i) / 2)$ cannot be 18 .

