Ma 416: Complex Variables Solutions to Homework Assignment 10

Prof. Wickerhauser

Due Thursday, November 17th, 2005

Read R. P. Boas, Invitation to Complex Analysis, Chapter 3, sections 17A-18C.

1. Verify that $1 /(1-z)$ can be continued outside the unit disk by expanding it about $z=i h$ for some $0<h<1$. Can you find an expansion about $z=i$?

Solution: Write

$$
\frac{1}{1-z}=\frac{1}{[1-i h]-[z-i h]}=\left(\frac{1}{1-i h}\right) \frac{1}{1-\frac{z-i h}{1-i h}}=\left(\frac{1}{1-i h}\right) \sum_{n=0}^{\infty} \frac{(z-i h)^{n}}{(1-i h)^{n}}
$$

This series has a radius of convergence

$$
R=\frac{1}{\lim _{n \rightarrow \infty} \sqrt[n]{1 /|1-i h|^{n}}}=|1-i h|=\sqrt{1+h^{2}}>1
$$

The open disk of radius R about $z=i h$ contains points such as $(1+h) i$ that are outside the unit disk centered at $z=0$. Notice that it does not include $z=1$.
There is no obstruction to letting $h=1$, or for that matter to letting $h=a$ for any $a \in \mathbf{R}$.
2. Suppose $f(z)=\sum_{n=0}^{\infty} z^{2^{n}}$. Find the radius of convergence R of this power series. Is there a function $g(z)$ analytic on a larger region than $D=\{|z|<R\}$ that agrees with $f(z)$ at all $z \in R$?

Solution: First note that the function f has power series $\sum_{\substack{k=0 \\ 2^{n} 0}}^{\infty} a_{n_{k}} z^{n_{k}}$ for $n_{k}=2^{k}$ and $a_{n_{k}}=1$. Thus the radius of convergence is $R=1 /\left[\lim _{n \rightarrow \infty} \sqrt[2^{n}]{1}\right]=1$.
Then, since $n_{k+1} / n_{k}=2>1$ for all k, Hadamard's gap theorem (section 17 F , page 146 of our textbook) implies that f has no analytic continuation outside $\{|z|<1\}$.
3. Use Abel's theorem to conclude that $\sum_{n=1}^{\infty}(-1)^{n} / n=-\ln 2$.

Solution: The hypotheses are satisfied: $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} z^{n}=-\log (1+z)$ with absolute convergence for all $|z|<1$, and $A=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ converges by the alternating sum
theorem. Hence $\lim _{z \rightarrow 1-}-\log (1+z)=A$, where the convergence occurs along the positive real axis. But since $\log z=\ln z$ for positive real z, and \ln is a continuous function, we conclude that $A=-\ln 2$.
4. Show that

$$
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{6}}-\frac{1}{\sqrt{7}}-\frac{1}{\sqrt{8}}+\cdots
$$

converges.
Solution: Rewrite the series as

$$
\left(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}\right)-\left(\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}\right)+\left(\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{6}}\right)-\left(\frac{1}{\sqrt{7}}+\frac{1}{\sqrt{8}}\right)+\cdots
$$

and re-label the terms as $\sum_{k=0}^{\infty} a_{k}$, where

$$
a_{k}=(-1)^{k}\left(\frac{1}{\sqrt{2 k+1}}+\frac{1}{\sqrt{2 k+2}}\right) .
$$

But $a_{k} \rightarrow 0$ as $k \rightarrow \infty$, and the terms are strictly alternating in sign, so the series converges by Abel's convergence theorem.

5 . Find the $(C, 1)$ sums of the series
(a) $\sum_{n=0}^{\infty}(-1)^{n}$,
(b) $\sum_{n=1}^{\infty}(-1)^{n}$, and
(c) $1-1+0+1-1+0+1-1+0+\cdots$ (where the terms $1,-1,0$ repeat forever).

Solution: (a) The partial sums are

$$
s_{k}=\sum_{i=0}^{k}(-1)^{i}= \begin{cases}1, & \text { if } k \text { is even } \\ 0, & \text { if } k \text { is odd }\end{cases}
$$

The ($C, 1$) sums $c_{n}=\frac{1}{n} \sum_{k=0}^{n-1} s_{k}$ therefore converge to $1 / 2$ as $n \rightarrow \infty$.
(b) The partial sums are

$$
s_{k}=\sum_{i=1}^{k}(-1)^{i}= \begin{cases}0, & \text { if } k \text { is even } \\ -1, & \text { if } k \text { is odd }\end{cases}
$$

The $(C, 1)$ sums $c_{n}=\frac{1}{n} \sum_{k=0}^{n-1} s_{k}$ therefore converge to $-1 / 2$ as $n \rightarrow \infty$.
(c) Let a_{i} denote the $i^{\text {th }}$ term of the sequence being summed, and suppose that the initial index is 0 , so $a_{0}=1$. Denote by $k \% 3$ the remainder after integer k is divided by 3 . Then the partial sums are

$$
s_{k}=\sum_{i=0}^{k} a_{i}= \begin{cases}1, & \text { if } k \% 3=0 \\ 0, & \text { if } k \% 3=1 \text { or } k \% 3=2\end{cases}
$$

The ($C, 1$) sums $c_{n}=\frac{1}{n} \sum_{k=0}^{n-1} s_{k}$ therefore converge to $1 / 3$ as $n \rightarrow \infty$.
6. Show that if $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is convergent in $|x|<1$ with $\left|n a_{n}\right| \leq 8$ for all n, and $f(x) \rightarrow+\infty$ as $x \rightarrow 1-$, then $\sum_{n=0}^{\infty} a_{n}=+\infty$.

Solution: This is similar to Exercise 18.13 on page 155 of our textbook. Let $Q>0$ be given. Since $f(x) \rightarrow+\infty$ as $x \rightarrow 1-$, we may fix x sufficiently close to 1 so that $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}>Q$.
Note that for any integer $N \geq 0$, we may decompose

$$
f(x)=\sum_{n=0}^{N} a_{n} x^{n}+\sum_{n=N+1}^{\infty} a_{n} x^{n}>Q \quad \Rightarrow \sum_{n=0}^{N} a_{n} x^{n} \geq Q-\left|\sum_{n=N+1}^{\infty} a_{n} x^{n}\right| .
$$

In particular, choosing $N \geq N_{x}=1 /(1-x)>0$, we have the estimate

$$
\left|\sum_{n=N+1}^{\infty} a_{n} x^{n}\right| \leq \sum_{n=N+1}^{\infty}\left|n a_{n}\right| \frac{x^{n}}{n}<\frac{1}{N+1} \sum_{n=N+1} x^{n}<\frac{8}{N+1} \frac{1}{(1-x)}<\frac{8 N}{N+1}<8
$$

For any $x<1$, all sufficiently large $N \geq N_{x}$ satisfy this estimate. That leads to an estimate for $\sum_{n=0}^{\infty} a_{n} x_{n}$ that is independent of x :

$$
(\forall x<1)\left(\forall N \geq N_{x}\right) \sum_{n=0}^{N} a_{n} x^{n}>Q-8 \quad \Rightarrow(\forall x<1) \sum_{n=0}^{\infty} a_{n} x^{n} \geq Q-8
$$

But then we may let $x \rightarrow 1-$ to conclude that $\sum_{n=0}^{\infty} a_{n} \geq Q-8$. Since Q was arbitrary, we conclude that $\sum_{n=0}^{\infty} a_{n}=+\infty$.

