
Ma 416: Complex Variables
Solutions to Homework Assignment 10

Prof. Wickerhauser

Due Thursday, November 17th, 2005

Read R. P. Boas, Invitation to Complex Analysis, Chapter 3, sections 17A–18C.

1. Verify that 1/(1 − z) can be continued outside the unit disk by expanding it about
z = ih for some 0 < h < 1. Can you find an expansion about z = i?

Solution: Write

1

1− z
=

1

[1− ih]− [z − ih]
=
(

1

1− ih

)
1

1− z−ih
1−ih

=
(

1

1− ih

) ∞∑
n=0

(z − ih)n

(1− ih)n
.

This series has a radius of convergence

R =
1

limn→∞
n

√
1/|1− ih|n

= |1− ih| =
√

1 + h2 > 1.

The open disk of radius R about z = ih contains points such as (1 + h)i that are
outside the unit disk centered at z = 0. Notice that it does not include z = 1.

There is no obstruction to letting h = 1, or for that matter to letting h = a for any
a ∈ R. 2

2. Suppose f(z) =
∑∞

n=0 z2n
. Find the radius of convergence R of this power series. Is

there a function g(z) analytic on a larger region than D = {|z| < R} that agrees with
f(z) at all z ∈ R?

Solution: First note that the function f has power series
∑∞

k=0 ank
znk for nk = 2k

and ank
= 1. Thus the radius of convergence is R = 1/[limn→∞

2n√
1] = 1.

Then, since nk+1/nk = 2 > 1 for all k, Hadamard’s gap theorem (section 17F, page
146 of our textbook) implies that f has no analytic continuation outside {|z| < 1}. 2

3. Use Abel’s theorem to conclude that
∑∞

n=1(−1)n/n = − ln 2.

Solution: The hypotheses are satisfied:
∑∞

n=1

(−1)n

n
zn = − log(1+z) with absolute

convergence for all |z| < 1, and A =
∑∞

n=1

(−1)n

n
converges by the alternating sum
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theorem. Hence limz→1−− log(1 + z) = A, where the convergence occurs along the
positive real axis. But since log z = ln z for positive real z, and ln is a continuous
function, we conclude that A = − ln 2. 2

4. Show that
1√
1

+
1√
2
− 1√

3
− 1√

4
+

1√
5

+
1√
6
− 1√

7
− 1√

8
+ · · ·

converges.

Solution: Rewrite the series as(
1√
1

+
1√
2

)
−
(

1√
3

+
1√
4

)
+

(
1√
5

+
1√
6

)
−
(

1√
7

+
1√
8

)
+ · · ·

and re-label the terms as
∑∞

k=0 ak, where

ak = (−1)k

(
1√

2k + 1
+

1√
2k + 2

)
.

But ak → 0 as k → ∞, and the terms are strictly alternating in sign, so the series
converges by Abel’s convergence theorem. 2

5. Find the (C, 1) sums of the series

(a)
∑∞

n=0(−1)n,

(b)
∑∞

n=1(−1)n, and

(c) 1− 1 + 0 + 1− 1 + 0 + 1− 1 + 0 + · · · (where the terms 1,−1, 0 repeat forever).

Solution: (a) The partial sums are

sk =
k∑

i=0

(−1)i =
{

1, if k is even,
0, if k is odd;

The (C, 1) sums cn = 1
n

∑n−1
k=0 sk therefore converge to 1/2 as n →∞.

(b) The partial sums are

sk =
k∑

i=1

(−1)i =
{

0, if k is even,
−1, if k is odd;

The (C, 1) sums cn = 1
n

∑n−1
k=0 sk therefore converge to −1/2 as n →∞.

(c) Let ai denote the ith term of the sequence being summed, and suppose that the
initial index is 0, so a0 = 1. Denote by k%3 the remainder after integer k is divided
by 3. Then the partial sums are

sk =
k∑

i=0

ai =
{

1, if k%3 = 0,
0, if k%3 = 1 or k%3 = 2;

The (C, 1) sums cn = 1
n

∑n−1
k=0 sk therefore converge to 1/3 as n →∞. 2
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6. Show that if f(x) =
∑∞

n=0 anx
n is convergent in |x| < 1 with |nan| ≤ 8 for all n, and

f(x) → +∞ as x → 1−, then
∑∞

n=0 an = +∞.

Solution: This is similar to Exercise 18.13 on page 155 of our textbook. Let Q > 0
be given. Since f(x) → +∞ as x → 1−, we may fix x sufficiently close to 1 so that
f(x) =

∑∞
n=0 anx

n > Q.

Note that for any integer N ≥ 0, we may decompose

f(x) =
N∑

n=0

anx
n +

∞∑
n=N+1

anx
n > Q ⇒

N∑
n=0

anx
n ≥ Q−

∣∣∣∣∣∣
∞∑

n=N+1

anx
n

∣∣∣∣∣∣ .
In particular, choosing N ≥ Nx = 1/(1− x) > 0, we have the estimate∣∣∣∣∣∣

∞∑
n=N+1

anx
n

∣∣∣∣∣∣ ≤
∞∑

n=N+1

|nan|
xn

n
<

1

N + 1

∑
n=N+1

xn <
8

N + 1

1

(1− x)
<

8N

N + 1
< 8.

For any x < 1, all sufficiently large N ≥ Nx satisfy this estimate. That leads to an
estimate for

∑∞
n=0 anxn that is independent of x:

(∀x < 1)(∀N ≥ Nx)
N∑

n=0

anx
n > Q− 8 ⇒ (∀x < 1)

∞∑
n=0

anx
n ≥ Q− 8

But then we may let x → 1− to conclude that
∑∞

n=0 an ≥ Q−8. Since Q was arbitrary,
we conclude that

∑∞
n=0 an = +∞. 2
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