Ma 416: Complex Variables Solutions to Homework Assignment 11

Prof. Wickerhauser

Due Thursday, December 1st, 2005

Read R. P. Boas, Invitation to Complex Analysis, Chapter 4, sections 19A-20F.

1. Find an analytic function f whose real part is $\Re f(x+i y)=x^{3} y-x y^{3}$.

Solution: Use $f(z)=z^{4} /(4 i)$, so

$$
\begin{aligned}
f(x+i y) & =\frac{(x+i y)^{4}}{4 i}=\frac{x^{4}+4 i x^{3} y-6 x^{2} y^{2}-4 i x y^{3}+y^{4}}{4 i} \\
& =x^{3} y-x y^{3}-i\left(\frac{x^{4}-6 x^{2} y^{2}+y^{4}}{4}\right)
\end{aligned}
$$

This f is a polynomial, hence it is an an entire analytic function.
2. Find the conjugate harmonic function of $g(x, y)=e^{-y} \cos x$.

Solution: Observe that g is the real part of the entire analytic function $f(z)=e^{i z}$:

$$
f(x+i y)=e^{i(x+i y)}=e^{i x-y}=e^{-y} \cos x+i e^{-y} \sin x
$$

Hence its harmonic conjugate is the imaginary part: $\tilde{g}(x, y)=e^{-y} \sin x$.
3. Is the function $h(x, y)=x^{2}+y^{2}$ the imaginary part of some function $f(x+i y)$ analytic in the unit disk in \mathbf{C} ?

Solution: No; h is not a harmonic function, since $\Delta h(x, y)=2+2=4 \neq 0$ for any (x, y). Hence it cannot be the real or imaginary part of an analytic function.
4. For $0 \leq r<1$ and $0 \leq \phi \leq 2 \pi$, define the function

$$
I(r, \phi)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\left(1-r^{2}\right) d \theta}{1+r^{2}-2 r \cos (\theta-\phi)}
$$

(This is the integral of the Poisson kernel $P(r, \theta-\phi)$.)
(a) Show that $I(r, \phi)$ does not depend on ϕ. (Hint: substitute $\theta \leftarrow \theta^{\prime}+\phi$.)
(b) Show that $I(r, \phi)$ does not depend on r. (Hint: put $a=2 r /\left(1+r^{2}\right)$, observe that $\left(1-r^{2}\right) /\left(1+r^{2}\right)=\sqrt{1-a^{2}}$, and look up $\int_{-\pi}^{\pi} d \theta /(1-a \cos \theta)=2 \pi / \sqrt{1-a^{2}}$ in a table of integrals.)
(c) Show that $I(r, \phi)=1$ for all $0 \leq r<1$ and $0 \leq \phi \leq 2 \pi$ by evaluating $I(0,0)=1$ and using parts (a) and (b).
(d) Conclude that if $u=u(x, y)$ is a harmonic function on the unit disk $D=\left\{x^{2}+y^{2} \leq\right.$ $1\}$, and $u(x, y)=K$ for all $x^{2}+y^{2}=1$, then $u(x, y)=K$ for all $(x, y) \in D$.

Solution: (a) Since $[-\pi, \pi]$ and $[-\pi+\phi, \pi+\phi]$ are both period intervals for $\cos (\theta-\phi)$ for any ϕ, we may shift and use the substitution $\theta \leftarrow \theta^{\prime}+\phi$ with $d \theta=d \theta^{\prime}$ to get

$$
\begin{aligned}
I(r, \phi) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\left(1-r^{2}\right) d \theta}{1+r^{2}-2 r \cos (\theta-\phi)} \\
& =\frac{1}{2 \pi} \int_{-\pi+\phi}^{\pi+\phi} \frac{\left(1-r^{2}\right) d \theta}{1+r^{2}-2 r \cos (\theta-\phi)} \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\left(1-r^{2}\right) d \theta^{\prime}}{1+r^{2}-2 r \cos \left(\theta^{\prime}-0\right)}=I(r, 0) .
\end{aligned}
$$

But this is true for all ϕ, so $I(r, \phi)$ must be independent of ϕ.
(b) First use part (a) to conclude that it suffices to show that $I(r, \phi)=I(r, 0)$ is independent of r. Following the hint, observe that if $0 \leq r<1$, then $a \stackrel{\text { def }}{=} 2 r /\left(1+r^{2}\right)$ also satisfies $0 \leq a<1$, and we have

$$
\sqrt{1-a^{2}}=\sqrt{\frac{\left[1+r^{2}\right]^{2}-[2 r]^{2}}{\left[1+r^{2}\right]^{2}}}=\sqrt{\frac{\left[1-r^{2}\right]^{2}}{\left[1+r^{2}\right]^{2}}}=\frac{1-r^{2}}{1+r^{2}} .
$$

Thus, dividing numerator and denominator of the integrand of $I(r, 0)$ by $1+r^{2}>0$ gives

$$
I(r, \phi)=I(r, 0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\sqrt{1-a^{2}} d \theta}{1-a \cos (\theta)} .
$$

Using a table of integrals, we evaluate

$$
\int_{-\pi}^{\pi} \frac{d \theta}{1-a \cos (\theta)}=\frac{2 \pi}{\sqrt{1-a^{2}}},
$$

for any a with $a^{2}<1$, using in this case formula 3.613 on page 409 of Gradshteyn and Ryzhik (fifth edition, 1994, ISBN 0-12-294755-X). But then

$$
I(r, \phi)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\sqrt{1-a^{2}} d \theta}{1-a \cos (\theta)}=1
$$

independently of a and thus of r.
(c) In addition to the direct evaluation in part (b), we may use the constancy of $I(r, \phi)$ to evaluate it at an easy point:

$$
I(r, \phi)=I(0,0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1 d \theta}{1-0}=1 .
$$

(d) If the real part of an analytic function $f(z)$ on D takes the constant value $\Re f\left(e^{i \theta}\right)=$ K on the boundary of D, then it must have constant real part K inside D, since

$$
\Re f\left(r e^{i \phi}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \Re f\left(e^{i \theta}\right) \frac{\left(1-r^{2}\right) d \theta}{1+r^{2}-2 r \cos (\theta-\phi)}=K I(r, \phi)=K
$$

But if u is any harmonic function on D, then $u=\Re f$ for some analytic f, so we conclude that $u(x, y)=K$ for all $(x, y) \in D$.
5. Show directly that $u(x, y)=x^{2}-y^{2}$ satisfies the averaging property: if $R>0, C_{R}=$ $\left\{r(\theta)=\left(x_{0}+R \cos \theta, y_{0}+R \sin \theta\right): 0 \leq \theta \leq 2 \pi\right\}$, and $d s=\left\|r^{\prime}(\theta)\right\| d \theta$ is the arc length differential on C_{R}, then

$$
\oint_{C_{R}} u(x, y) d s=2 \pi R u\left(x_{0}, y_{0}\right) .
$$

How can Cauchy's integral formula be used to derive the same results?
Solution: Let $x(\theta)=x_{0}+R \cos \theta$ and $y(\theta)=y_{0}+R \sin \theta$ be the coordinate functions for the given parameterization of C_{R}. Then $r(\theta)=(x(\theta), y(\theta)), r^{\prime}(\theta)=$ $R(-\sin \theta, \cos \theta)$, and $\left\|r^{\prime}(\theta)\right\|=R$ for all $\theta \in[0,2 \pi]$, so $d s=R d \theta$.
Now evaluate

$$
\begin{aligned}
u(x(\theta), y(\theta))-u\left(x_{0}, y_{0}\right) & =2 R\left(x_{0} \cos \theta-y_{0} \sin \theta\right)+R^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \\
& =2 R\left(x_{0} \cos \theta-y_{0} \sin \theta\right)+R^{2} \cos (2 \theta)
\end{aligned}
$$

so

$$
\oint_{C_{r}}\left[u(x, y)-u\left(x_{0}, y_{0}\right)\right] d s=\int_{0}^{2 \pi}\left[2 R\left(x_{0} \cos \theta-y_{0} \sin \theta\right)+R^{2} \cos (2 \theta)\right] R d \theta=0,
$$

as $\cos \theta, \sin \theta$, and $\cos (2 \theta)$ all have integral zero over the period interval $[0,2 \pi]$. Thus

$$
\oint_{C_{r}} u(x, y) d s=\oint_{C_{r}} u\left(x_{0}, y_{0}\right) d s .
$$

Finally, compute

$$
\oint_{C_{r}} u\left(x_{0}, y_{0}\right) d s=R u\left(x_{0}, y_{0}\right) \int_{0}^{2 \pi} 1 d \theta=2 \pi R u\left(x_{0}, y_{0}\right) .
$$

Alternatively, use the fact that a harmonic function is the real part of an analytic function, after checking that $u(x, y)$ is harmonic by testing the Laplacian:

$$
\Delta u(x, y)=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=2-2=0 .
$$

Since $\Delta u(x, y)=0$ everywhere, and the polynomial u is evidently differentiable everywhere, we conclude that u is harmonic. By Cauchy's integral theorem, u satisfies the mean value property.

