Ma 416: Complex Variables Solutions to Homework Assignment 12

Prof. Wickerhauser

Due Thursday, December 8th, 2005

Read R. P. Boas, Invitation to Complex Analysis, Chapter 4, sections 21A-23B and 25A-25E.

1. Suppose that $u=u(x, y)$ is continuous on the closed unit disk $D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$ and u is twice continuously differentiable with $\Delta u(x, y)=0$ inside D. Find a series representing u for each of the following boundary conditions $u(\cos \theta, \sin \theta)=\psi(\theta)$, $-\pi \leq \theta \leq \pi$:
(a) $\quad \psi(\theta)= \begin{cases}1, & \text { if } \theta \in[-\pi / 2, \pi / 2] ; \\ 0, & \text { otherwise, }\end{cases}$
(b) $\psi(\theta)=\sin \theta$.

Solution: Let $\psi(\theta)=\sum_{k=-\infty}^{\infty} c_{k} e^{i k \theta}$ denote the Fourier series of the boundary function.
(a) First find the Fourier coefficients:

$$
c_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i k \theta} \phi(\theta) d \theta=\frac{1}{2 \pi} \int_{-\pi / 2}^{\pi / 2} e^{-i k \theta} d \theta=\frac{1}{\pi k} \sin \frac{k \pi}{2}= \begin{cases}{[\pi k]^{-1},} & k=4 j+1 \\ -[\pi k]^{-1}, & k=4 j-1 \\ 0, & \text { otherwise }\end{cases}
$$

Then the solution is

$$
u\left(r e^{i \theta}\right)=\sum_{k=-\infty}^{\infty} c_{k} r^{|k|} e^{i k \theta}=\sum_{j=-\infty}^{\infty}\left[\frac{r^{|4 j+1|}}{\pi(4 j+1)} e^{i(4 j+1) \theta}-\frac{r^{|4 j-1|}}{\pi(4 j-1)} e^{i(4 j-1) \theta}\right]
$$

(b) Find the Fourier coefficients:

$$
c_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i k \theta} \phi(\theta) d \theta= \begin{cases}-i / 2, & \text { if } k=1 \\ i / 2, & \text { if } k=-1 \\ 0, & \text { otherwise }\end{cases}
$$

That gives $\psi(\theta)=\sum_{k=-\infty}^{\infty} c_{k} e^{i k \theta}=-\frac{i}{2} e^{i \theta}+\frac{i}{2} e^{-i \theta}=\left(e^{i \theta}-e^{-i \theta}\right) / 2 i=\sin \theta$ as required. Then the solution inside the disk is

$$
u\left(r e^{i \theta}\right)=\sum_{k=-\infty}^{\infty} c_{k} r^{|k|} e^{i k \theta}=r \sin \theta
$$

This is the imaginary part of the entire analytic function $f(z)=z$.
2. Suppose that $u(x, y)$ is continuous on the closed annulus $A=\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 4\right\}$ and u is twice continuously differentiable with $\Delta u(x, y)=0$ inside A. Find a series representing u for each of the following boundary conditions $u(\cos \theta, \sin \theta)=\psi_{1}(\theta)$ and $u(2 \cos \theta, 2 \sin \theta)=\psi_{2}(\theta),-\pi \leq \theta \leq \pi:$
(a) $\quad \psi_{1}(\theta)=0 ; \quad \psi_{2}(\theta)=|\theta|$;
(b) $\psi_{1}(\theta)=\cos \theta ; \psi_{2}(\theta)=\sin \theta$

Solution: Let $\psi_{1}(\theta)=\sum_{k=-\infty}^{\infty} c_{k}^{1} e^{i k \theta}$ and $\psi_{2}(\theta)=\sum_{k=-\infty}^{\infty} c_{k}^{2} e^{i k \theta}$ denote the Fourier series of the boundary functions. Observe that the inner and outer radii of the annulus are $r_{1}=1$ and $r_{2}=2$, respectively.

Following Exercise 21.4, as solved on pp.316-317 of our text, the solution may be written as a linear combination of the separated components solving the r and θ parts of:

$$
u\left(r e^{i \theta}\right)=c \ln r+\sum_{k=-\infty}^{\infty}\left(a_{k} r^{k}+b_{k} r^{-k}\right) e^{i k \theta}
$$

Identifying the coefficients of $e^{i k \theta}$ with the Fourier coefficients of the boundary functions at $r=1$ and $r=2$ gives

$$
\begin{aligned}
c_{0}^{1} & =c \ln 1+a_{0}+b_{0}=a_{0}+b_{0} \\
c_{0}^{2} & =c \ln 2+a_{0}+b_{0} \\
& \Rightarrow c=\left(c_{0}^{2}-c_{0}^{1}\right) / \ln 2 ; \\
& \Rightarrow a_{0}+b_{0}=c_{0}^{1} ; \\
c_{k}^{1} & =a_{k} 1^{k}+b_{k} 1^{-k}=a_{k}+b_{k} \\
c_{k}^{2} & =a_{k} 2^{k}+b_{k} 2^{-k} \\
& \Rightarrow a_{k}=\left(c_{k}^{2}-2^{-k} c_{k}^{1}\right) /\left(2^{k}-2^{-k}\right) \\
& \Rightarrow b_{k}=\left(c_{k}^{2}-2^{k} c_{k}^{1}\right) /\left(2^{-k}-2^{k}\right) .
\end{aligned}
$$

(a) First find the Fourier coefficients:

$$
\begin{aligned}
& c_{k}^{1}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i k \theta} \phi_{1}(\theta) d \theta=0, \quad \text { all } k \in \mathbf{Z} \\
& c_{k}^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i k \theta} \phi_{2}(\theta) d \theta=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|\theta| e^{-i k \theta} d \theta= \begin{cases}\pi / 2, & k=0 ; \\
-2 /\left[\pi k^{2}\right], & k \text { odd; } \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

For c_{k}^{2} we use the identity

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|\theta| e^{-i k \theta} d \theta=\frac{1}{\pi} \int_{0}^{\pi} \theta \cos k \theta d \theta
$$

and then integrate by parts.

Using the formulas for the separated expansion of u developed in the initial discussion gives

$$
\begin{aligned}
c & =\pi /(2 \ln 2) ; \\
a_{0}+b_{0} & =0 ; \\
a_{k} & = \begin{cases}0, & \text { if } k \neq 0 \text { is even; } \\
-2 /\left[\pi k^{2}\left(2^{k}-2^{-k}\right)\right], & \text { if } k \text { is odd; }\end{cases} \\
b_{k} & = \begin{cases}0, & \text { if } k \neq 0 \text { is even; } \\
2 /\left[\pi k^{2}\left(2^{k}-2^{-k}\right)\right], & \text { if } k \text { is odd. }\end{cases}
\end{aligned}
$$

Hence the solution is

$$
u\left(r e^{i \theta}\right)=\frac{\pi}{2 \ln 2} \ln r-\frac{2}{\pi} \sum_{k \in \mathbf{Z} \backslash\{0\}} \frac{r^{k}-r^{-k}}{\pi k^{2}\left(2^{k}-2^{-k}\right)} e^{i k \theta}
$$

(b) Find the Fourier coefficients:

$$
\begin{aligned}
& c_{k}^{1}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i k \theta} \phi_{1}(\theta) d \theta= \begin{cases}1 / 2, & \text { if } k=1 \text { or } k=-1 ; \\
0, & \text { otherwise, as in Problem } 1(\mathrm{~b}) .\end{cases} \\
& c_{k}^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i k \theta} \phi_{2}(\theta) d \theta= \begin{cases}-i / 2, & \text { if } k=1 ; \\
i / 2, & \text { if } k=-1 ; \\
0, & \text { otherwise, as in Problem 1(b) }\end{cases}
\end{aligned}
$$

Using the formulas for the separated expansion of u developed in the initial discussion gives

$$
\begin{aligned}
c & =0 ; \\
a_{0}+b_{0} & =0 ; \\
a_{k} & = \begin{cases}(2-i) / 3, & \text { if } k=-1 ; \\
-(2 i+1) / 6, & \text { if } k=1 ; \\
0, & \text { otherwise } ;\end{cases} \\
b_{k} & = \begin{cases}(2 i-1) / 6, & \text { if } k=-1 ; \\
(2+i) / 3, & \text { if } k=1 ; \\
0, & \text { otherwise } .\end{cases}
\end{aligned}
$$

Hence the solution is

$$
u\left(r e^{i \theta}\right)=\left[\frac{2-i}{3 r}+\frac{2 i-1}{6} r\right] e^{-i \theta}+\left[\frac{2+i}{3 r}-\frac{2 i+1}{6} r\right] e^{i \theta} .
$$

3. Suppose that $f=f(z)$ is analytic and univalent in a region $D \subset \mathbf{C}$ and let $E=f(D)=$ $\{f(z): z \in D\}$ be its range. Write $u+i v=f(x+i y)$ and identify (u, v) with $u+i v$. Prove that if $\phi=\phi(u, v)$ is a harmonic function in E, then $\psi(x, y) \stackrel{\text { def }}{=} \phi(f(x+i y))$ is a harmonic function in D.

Solution: Write $u=u(x, y)=\Re f(x+i y)$ and $v=v(x, y)=\Im f(x+i y)$, so we have $\psi(x, y)=\phi(u(x, y), v(x, y))$. By the chain rule for functions of two real variables,

$$
\begin{aligned}
\frac{\partial \psi}{\partial x} & =\frac{\partial \phi}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial \phi}{\partial v} \frac{\partial v}{\partial x} ; \\
\frac{\partial^{2} \psi}{\partial x^{2}} & =\frac{\partial^{2} \phi}{\partial u^{2}}\left(\frac{\partial u}{\partial x}\right)^{2}+2 \frac{\partial^{2} \phi}{\partial u \partial v} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+\frac{\partial^{2} \phi}{\partial v^{2}}\left(\frac{\partial v}{\partial x}\right)^{2}+\frac{\partial \phi}{\partial u} \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial \phi}{\partial v} \frac{\partial^{2} v}{\partial x^{2}} ; \\
\frac{\partial \psi}{\partial y} & =\frac{\partial \phi}{\partial u} \frac{\partial u}{\partial y}+\frac{\partial \phi}{\partial v} \frac{\partial v}{\partial y} ; \\
\frac{\partial^{2} \psi}{\partial y^{2}} & =\frac{\partial^{2} \phi}{\partial u^{2}}\left(\frac{\partial u}{\partial y}\right)^{2}+2 \frac{\partial^{2} \phi}{\partial u \partial v} \frac{\partial u}{\partial y} \frac{\partial v}{\partial y}+\frac{\partial^{2} \phi}{\partial v^{2}}\left(\frac{\partial v}{\partial y}\right)^{2}+\frac{\partial \phi}{\partial u} \frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial \phi}{\partial v} \frac{\partial^{2} v}{\partial y^{2}}
\end{aligned}
$$

Here we have used the equality of mixed partial derivatives for the harmonic function ϕ, namely $\frac{\partial^{2} \phi}{\partial u \partial v}=\frac{\partial^{2} \phi}{\partial v \partial u}$. We now add the second partial derivatives and rearrange the terms to get:

$$
\begin{aligned}
\Delta \psi=\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}=\frac{\partial^{2} \phi}{\partial u^{2}} & {\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}\right]+\frac{\partial^{2} \phi}{\partial v^{2}}\left[\left(\frac{\partial v}{\partial y}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}\right]+} \\
+ & 2 \frac{\partial^{2} \phi}{\partial u \partial v}\left[\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+\frac{\partial u}{\partial y} \frac{\partial v}{\partial y}\right]+ \\
& +\frac{\partial \phi}{\partial u}\left[\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right]+\frac{\partial \phi}{\partial v}\left[\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right]
\end{aligned}
$$

Since f is analytic, its real and imaginary parts satisfy the Cauchy-Riemann equations:

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} ; \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} .
$$

Thus

$$
\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+\frac{\partial u}{\partial y} \frac{\partial v}{\partial y}=\frac{\partial v}{\partial y} \frac{\partial v}{\partial x}-\frac{\partial v}{\partial x} \frac{\partial v}{\partial y}=0
$$

so the middle-line term on the right-hand side vanishes. Likewise, the top-line term equals

$$
\begin{aligned}
\frac{\partial^{2} \phi}{\partial u^{2}}\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}\right] & +\frac{\partial^{2} \phi}{\partial v^{2}}\left[\left(\frac{\partial v}{\partial y}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}\right]= \\
=\frac{\partial^{2} \phi}{\partial u^{2}}\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(-\frac{\partial v}{\partial x}\right)^{2}\right] & +\frac{\partial^{2} \phi}{\partial v^{2}}\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}\right]= \\
& =\left[\frac{\partial^{2} \phi}{\partial u^{2}}+\frac{\partial^{2} \phi}{\partial v^{2}}\right]\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}\right] \\
& =[\Delta \phi]\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}\right]=0
\end{aligned}
$$

since $\Delta \phi=0$ for harmonic function ϕ.
Finally, the bottom-line terms on the right-hand side vanish because $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\Delta u=0$ and $\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=\Delta v=0$, since the real and imaginary parts u, v of an analytic function $f=u+i v$ are harmonic functions. We conclude that $\Delta \psi=0$.
4. Find a Möbius transform mapping $0,1, i$ to $\infty, 1,-i$, respectively. Is it unique?

Solution: Let $m(z)=(a z+b) /(c z+d)$ and determine a, b, c, d satisfying the stated conditions and also $a d-b c=1$. But then

$$
\begin{aligned}
m(0)=\infty & \Rightarrow d=0 \\
m(1)=1 & \Rightarrow a+b=c+d=c \\
m(i)=-i & \Rightarrow a i+b=c-i d=c
\end{aligned}
$$

Together, these three conditions force $a=0, b=c$, and $d=0$. With $a d-b c=1$ we get $b=c= \pm i$. That gives the Möbius transform $m(z)=1 / z$. It is unique by Exercise 25.2 and the discussion preceding it on page 193 of our textbook.
5. Find all the Möbius transforms mapping the disk $\{|z|<1\}$ to its exterior $\{|z|>1\}$.

Solution: First note that $m(z)=1 / z$ is one Möbius transformation that maps $\{|z|<1\}$ to $\{|z|>1\}$. Then note that any such Möbius transformation may be written as the composition $m \circ n$, where n is a Möbius transform of the unit disk $\{|z|<1\}$ into itself. But by Exercise 25.4 on page 197 of our textbook, there is a two-parameter family

$$
n_{\alpha, \lambda}(z) \stackrel{\text { def }}{=} e^{i \lambda} \frac{z-\alpha}{\bar{\alpha} z-1} ; \quad \lambda \in \mathbf{R},|\alpha|<1,
$$

giving all the Möbius transforms of $\{|z|<1\}$. (Note: our condition $a d-b c=1$ is met by using the more complicated formula $(a, b, c, d)=k\left(e^{i \lambda},-\alpha e^{i \lambda}, \bar{\alpha},-1\right)$, where $k= \pm i e^{-i \lambda / 2} / \sqrt{1-|\alpha|^{2}}$.) Hence the complete set of Möbius transforms we seek is

$$
\left\{M(z)=1 / n_{\alpha, \lambda}(z)=e^{i \lambda} \frac{\bar{\alpha} z-1}{z-\alpha}: \lambda \in \mathbf{R},|\alpha|<1\right\} .
$$

