
Ma 416: Complex Variables
Solutions to Homework Assignment 12

Prof. Wickerhauser

Due Thursday, December 8th, 2005

Read R. P. Boas, Invitation to Complex Analysis, Chapter 4, sections 21A–23B and
25A-25E.

1. Suppose that u = u(x, y) is continuous on the closed unit diskD = {(x, y) : x2+y2 ≤ 1}
and u is twice continuously differentiable with ∆u(x, y) = 0 inside D. Find a series
representing u for each of the following boundary conditions u(cos θ, sin θ) = ψ(θ),
−π ≤ θ ≤ π:

(a) ψ(θ) =
{

1, if θ ∈ [−π/2, π/2];
0, otherwise,

(b) ψ(θ) = sin θ.

Solution: Let ψ(θ) =
∑∞

k=−∞ cke
ikθ denote the Fourier series of the boundary func-

tion.

(a) First find the Fourier coefficients:

ck =
1

2π

∫ π

−π
e−ikθφ(θ) dθ =

1

2π

∫ π/2

−π/2
e−ikθ dθ =

1

πk
sin

kπ

2
=


[πk]−1, k = 4j + 1;
−[πk]−1, k = 4j − 1;
0, otherwise.

Then the solution is

u(reiθ) =
∞∑

k=−∞
ckr

|k|eikθ =
∞∑

j=−∞

[
r|4j+1|

π(4j + 1)
ei(4j+1)θ − r|4j−1|

π(4j − 1)
ei(4j−1)θ

]

(b) Find the Fourier coefficients:

ck =
1

2π

∫ π

−π
e−ikθφ(θ) dθ =


−i/2, if k = 1;
i/2, if k = −1;
0, otherwise.

That gives ψ(θ) =
∑∞

k=−∞ cke
ikθ = − i

2
eiθ + i

2
e−iθ = (eiθ − e−iθ)/2i = sin θ as required.

Then the solution inside the disk is

u(reiθ) =
∞∑

k=−∞
ckr

|k|eikθ = r sin θ.

This is the imaginary part of the entire analytic function f(z) = z. 2
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2. Suppose that u(x, y) is continuous on the closed annulus A = {(x, y) : 1 ≤ x2 +y2 ≤ 4}
and u is twice continuously differentiable with ∆u(x, y) = 0 inside A. Find a series
representing u for each of the following boundary conditions u(cos θ, sin θ) = ψ1(θ) and
u(2 cos θ, 2 sin θ) = ψ2(θ), −π ≤ θ ≤ π:

(a) ψ1(θ) = 0; ψ2(θ) = |θ|; (b) ψ1(θ) = cos θ; ψ2(θ) = sin θ

Solution: Let ψ1(θ) =
∑∞

k=−∞ c1ke
ikθ and ψ2(θ) =

∑∞
k=−∞ c2ke

ikθ denote the Fourier
series of the boundary functions. Observe that the inner and outer radii of the annulus
are r1 = 1 and r2 = 2, respectively.

Following Exercise 21.4, as solved on pp.316–317 of our text, the solution may be
written as a linear combination of the separated components solving the r and θ parts
of:

u(reiθ) = c ln r +
∞∑

k=−∞
(akr

k + bkr
−k)eikθ.

Identifying the coefficients of eikθ with the Fourier coefficients of the boundary functions
at r = 1 and r = 2 gives

c10 = c ln 1 + a0 + b0 = a0 + b0

c20 = c ln 2 + a0 + b0

⇒ c = (c20 − c10)/ ln 2;

⇒ a0 + b0 = c10;

c1k = ak1
k + bk1

−k = ak + bk

c2k = ak2
k + bk2

−k

⇒ ak = (c2k − 2−kc1k)/(2
k − 2−k)

⇒ bk = (c2k − 2kc1k)/(2
−k − 2k).

(a) First find the Fourier coefficients:

c1k =
1

2π

∫ π

−π
e−ikθφ1(θ) dθ = 0, all k ∈ Z;

c2k =
1

2π

∫ π

−π
e−ikθφ2(θ) dθ =

1

2π

∫ π

−π
|θ|e−ikθ dθ =


π/2, k = 0;
−2/[πk2], k odd;
0, otherwise.

For c2k we use the identity

1

2π

∫ π

−π
|θ|e−ikθ dθ =

1

π

∫ π

0
θ cos kθ dθ

and then integrate by parts.
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Using the formulas for the separated expansion of u developed in the initial discussion
gives

c = π/(2 ln 2);

a0 + b0 = 0;

ak =
{

0, if k 6= 0 is even;
−2/[πk2(2k − 2−k)], if k is odd;

bk =
{

0, if k 6= 0 is even;
2/[πk2(2k − 2−k)], if k is odd.

Hence the solution is

u(reiθ) =
π

2 ln 2
ln r − 2

π

∑
k∈Z\{0}

rk − r−k

πk2(2k − 2−k)
eikθ.

(b) Find the Fourier coefficients:

c1k =
1

2π

∫ π

−π
e−ikθφ1(θ) dθ =

{
1/2, if k = 1 or k = −1;
0, otherwise, as in Problem 1(b).

c2k =
1

2π

∫ π

−π
e−ikθφ2(θ) dθ =


−i/2, if k = 1;
i/2, if k = −1;
0, otherwise, as in Problem 1(b);

Using the formulas for the separated expansion of u developed in the initial discussion
gives

c = 0;

a0 + b0 = 0;

ak =


(2− i)/3, if k = −1;
−(2i+ 1)/6, if k = 1;
0, otherwise;

bk =


(2i− 1)/6, if k = −1;
(2 + i)/3, if k = 1;
0, otherwise.

Hence the solution is

u(reiθ) =
[
2− i

3r
+

2i− 1

6
r
]
e−iθ +

[
2 + i

3r
− 2i+ 1

6
r
]
eiθ.

2

3. Suppose that f = f(z) is analytic and univalent in a region D ⊂ C and let E = f(D) =
{f(z) : z ∈ D} be its range. Write u + iv = f(x + iy) and identify (u, v) with u + iv.

Prove that if φ = φ(u, v) is a harmonic function in E, then ψ(x, y)
def
= φ(f(x+ iy)) is

a harmonic function in D.
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Solution: Write u = u(x, y) = <f(x+ iy) and v = v(x, y) = =f(x+ iy), so we have
ψ(x, y) = φ(u(x, y), v(x, y)). By the chain rule for functions of two real variables,

∂ψ

∂x
=

∂φ

∂u

∂u

∂x
+
∂φ

∂v

∂v

∂x
;

∂2ψ

∂x2
=

∂2φ

∂u2

(
∂u

∂x

)2

+ 2
∂2φ

∂u∂v

∂u

∂x

∂v

∂x
+
∂2φ

∂v2

(
∂v

∂x

)2

+
∂φ

∂u

∂2u

∂x2
+
∂φ

∂v

∂2v

∂x2
;

∂ψ

∂y
=

∂φ

∂u

∂u

∂y
+
∂φ

∂v

∂v

∂y
;

∂2ψ

∂y2
=

∂2φ

∂u2

(
∂u

∂y

)2

+ 2
∂2φ

∂u∂v

∂u

∂y

∂v

∂y
+
∂2φ

∂v2

(
∂v

∂y

)2

+
∂φ

∂u

∂2u

∂y2
+
∂φ

∂v

∂2v

∂y2
;

Here we have used the equality of mixed partial derivatives for the harmonic function
φ, namely ∂2φ

∂u∂v
= ∂2φ

∂v∂u
. We now add the second partial derivatives and rearrange the

terms to get:

∆ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
=

∂2φ

∂u2

(∂u
∂x

)2

+

(
∂u

∂y

)2
+

∂2φ

∂v2

(∂v
∂y

)2

+

(
∂v

∂x

)2
+

+ 2
∂2φ

∂u∂v

[
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

]
+

+
∂φ

∂u

[
∂2u

∂x2
+
∂2u

∂y2

]
+
∂φ

∂v

[
∂2v

∂x2
+
∂2v

∂y2

]
;

Since f is analytic, its real and imaginary parts satisfy the Cauchy-Riemann equations:

∂u

∂x
=
∂v

∂y
;

∂u

∂y
= −∂v

∂x
.

Thus
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y
=
∂v

∂y

∂v

∂x
− ∂v

∂x

∂v

∂y
= 0,

so the middle-line term on the right-hand side vanishes. Likewise, the top-line term
equals

∂2φ

∂u2

(∂u
∂x

)2

+

(
∂u

∂y

)2
 +

∂2φ

∂v2

(∂v
∂y

)2

+

(
∂v

∂x

)2
 =

=
∂2φ

∂u2

(∂u
∂x

)2

+

(
−∂v
∂x

)2
 +

∂2φ

∂v2

(∂u
∂x

)2

+

(
∂v

∂x

)2
 =

=

[
∂2φ

∂u2
+
∂2φ

∂v2

] (∂u
∂x

)2

+

(
∂v

∂x

)2


= [∆φ]

(∂u
∂x

)2

+

(
∂v

∂x

)2
 = 0,
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since ∆φ = 0 for harmonic function φ.

Finally, the bottom-line terms on the right-hand side vanish because ∂2u
∂x2 +∂2u

∂y2 = ∆u = 0

and ∂2v
∂x2 + ∂2v

∂y2 = ∆v = 0, since the real and imaginary parts u, v of an analytic function
f = u+ iv are harmonic functions. We conclude that ∆ψ = 0. 2

4. Find a Möbius transform mapping 0, 1, i to ∞, 1,−i, respectively. Is it unique?

Solution: Let m(z) = (az+ b)/(cz+d) and determine a, b, c, d satisfying the stated
conditions and also ad− bc = 1. But then

m(0) = ∞ ⇒ d = 0;

m(1) = 1 ⇒ a+ b = c+ d = c;

m(i) = −i ⇒ ai+ b = c− id = c.

Together, these three conditions force a = 0, b = c, and d = 0. With ad − bc = 1 we
get b = c = ±i. That gives the Möbius transform m(z) = 1/z. It is unique by Exercise
25.2 and the discussion preceding it on page 193 of our textbook. 2

5. Find all the Möbius transforms mapping the disk {|z| < 1} to its exterior {|z| > 1}.

Solution: First note that m(z) = 1/z is one Möbius transformation that maps
{|z| < 1} to {|z| > 1}. Then note that any such Möbius transformation may be
written as the composition m ◦ n, where n is a Möbius transform of the unit disk
{|z| < 1} into itself. But by Exercise 25.4 on page 197 of our textbook, there is a
two-parameter family

nα,λ(z)
def
= eiλ z − α

ᾱz − 1
; λ ∈ R, |α| < 1,

giving all the Möbius transforms of {|z| < 1}. (Note: our condition ad − bc = 1 is
met by using the more complicated formula (a, b, c, d) = k(eiλ,−αeiλ, ᾱ,−1), where

k = ±ie−iλ/2/
√

1− |α|2.) Hence the complete set of Möbius transforms we seek is

{M(z) = 1/nα,λ(z) = eiλ ᾱz − 1

z − α
: λ ∈ R, |α| < 1}.
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