Ma 449: Numerical Applied Mathematics. Final Examination.

Prof. Wickerhauser; 6:00-8:00pm Friday, December 12th, 2008

You may use a calculator and the textbook. Please write your answers in the bluebook.

1. Suppose that $Q(h)=Q(f,[a, b], h)$ is a quadrature rule that satisfies

$$
Q(h)=\int_{a}^{b} f(x) d x+O\left(h^{3}\right) .
$$

Find a formula that combines $Q(h)$ and $Q(h / 2)$ to give $\int_{a}^{b} f(x) d x+O\left(h^{4}\right)$.
2. (a) Use the composite trapezoid rule with stepsize $h=1$ to approximate $\int_{-1}^{1} \frac{d x}{1+x^{2}}$.
(b) Estimate an upper bound for the error.
3. Use the two-point Gauss-Legendre integration rule to approximate $\int_{-1}^{1} \frac{d x}{1+x^{2}}$.
4. The function $f(x)=\exp (x)+4 \cos (x)$ is unimodal on the interval $[1,2]$. Find its minimum in that interval to 4 significant digits.
5. Use Euler's method with step size $h=1$ to solve the following initial value problem on the interval [0, 3]:

$$
y^{\prime}(t)=(3-2 t) y(t), \quad 0<t<3 ; \quad y(0)=1 .
$$

Tabulate the approximations $y(1), y(2)$, and $y(3)$, and compare the resulting $y(3)$ with the exact value $y(3)=1$.
6. Use the finite differences method with step size $h=1$ to solve the following boundary value problem on the interval $[0,3]$:

$$
x^{\prime \prime}(t)=\left(4 t^{2}-12 t+11\right) x(t) ; \quad x(0)=1, \quad x(3)=1
$$

7. Let $A=\left(\begin{array}{cc}5 & -1 \\ -1 & 5\end{array}\right)$.
(a) Find the eigenvalues of A.
(b) Find a Givens rotation matrix $G=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$, for some θ, such that $G A$ is uppertriangular.
(c) Find the eigenvalues of $G A G^{T}$.
