Math 449: Numerical Applied Mathematics Midterm Examination

Prof. Wickerhauser
21 October 2011

You may use a calculator and the textbook. Please write your answers in the bluebook.
Problem 1. Express $1 / 7=0 . \overline{142857}$ (base 10) in base 2 notation, giving at least 10 digits after the radix point.

Problem 2. Note: "log" means the natural logarithm.
(a) Find a polynomial $p=p(h)$ of minimal degree in h such that $\log (1+h)=p(h)+O\left(h^{5}\right)$ as $h \rightarrow 0$.
(b) Find $\epsilon>0$ such that $|\log (1+h)-p(h)|<0.00007$ whenever $|h|<\epsilon$.

Problem 3. The function $f(x)=e^{x}+\log x$ has a unique root in the interval $0<x<1$.
(a) Find the Newton-Raphson iteration formula for the equation $f(x)=0$.
(b) Solve for x in $f(x)=0$ by any method that you choose. Give at least 5 correct digits after the decimal point.

For the following four problems, let $A=\left(\begin{array}{ccc}2 & -2 & 0 \\ -1 & 3 & -2 \\ 0 & -1 & 4\end{array}\right), \mathbf{b}=\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right)$, and $\mathbf{x}=\left(\begin{array}{c}3 \\ 2 \\ -1\end{array}\right)$.
Problem 4. Find a factorization $A=L U$, where matrix L is unit lower triangular and matrix U is upper triangular. (Hint: no interchanges are needed.)

Problem 5. Find the determinant $\operatorname{det} A$.
Problem 6. Let L and U be the matrices from problem 4. Suppose that \mathbf{y} and \mathbf{z} are vectors in $\mathbf{R}^{3}, \mathbf{y}$ solves $L \mathbf{y}=2 \mathbf{x}$, and \mathbf{z} solves $U \mathbf{z}=3 \mathbf{y}$. Compute $A \mathbf{z}$.

Problem 7. (a) Compute the vector $A \mathbf{b}$.
(b) Compute the inner product of $A \mathbf{b}$ with \mathbf{b}.
(c) Find the cosine of the angle between $A \mathbf{b}$ and \mathbf{b}

Problem 8. Find the complex exponential Fourier series for the function $f(x)=\cos (x)+\sin (2 x)$. (Hint: it has finitely many nonzero terms.)

Problem 9. Fix $c>0$ and let $P_{0}=(-1,0), P_{1}=(0, c)$, and $P_{2}=(1,0)$ be three points in the (x, y)-plane. Let $B=B(t), 0 \leq t \leq 1$, be the Bézier curve with control points P_{0}, P_{1}, P_{2}. Find the maximum y-coordinate of $B(t)$ for any t.

Problem 10. Find the least squares curve of the form $y(x)=A x+B$ for the three points $(0,0)$, $(0,1)$, and $(2,1)$.

