Math 449: Numerical Applied Mathematics Midterm Examination

Professor Wickerhauser

Wednesday, 19 October 2016
6 problems on $1+6$ pages

No written material, no collaboration, and no electronic devices are allowed. Please write your answers in the space provided. You have 50 minutes.

Useful formulas:

- The Bézier curve through control points P_{0}, \ldots, P_{n} is $B(t)=P_{0} B_{0, n}(t)+\cdots+P_{n} B_{n, n}(t), 0 \leq t \leq 1$, where $B_{k, n}(t)=\binom{n}{k} t^{k}(1-t)^{n-k}$.
- Theorem. If there exists $K<1$ such that $|g(x)-g(y)| \leq K|x-y|$ for all x, y, then g is a contraction map and iteration $x_{n+1}=g\left(x_{n}\right)$ from any initial point x_{0} will converge to a unique limit p satisfying

$$
\left|x_{n}-p\right| \leq\left|x_{1}-x_{0}\right| K^{n} /(1-K)
$$

- Theorem. If f has $n+1$ continuous derivatives, then for any a, x there exists a point c betwen a and x such that

$$
f(a+x)=f(a)+x f^{\prime}(a) / 1!+\cdots+x^{n} f^{(n)}(a) / n!+x^{n+1} f^{(n+1)}(c) /(n+1)!
$$

- Normal equations for the least squares line $y=A x+B$ determined by the points $\left\{\left(x_{k}, y_{k}\right): k=\right.$ $1, \ldots, n\}$ are

$$
\left(\begin{array}{cc}
\sum x_{k}^{2} & \sum x_{k} \\
\sum x_{k} & n
\end{array}\right)\binom{A}{B}=\binom{\sum x_{k} y_{k}}{\sum y_{k}} .
$$

- Newton's form for the Lagrange polynomial through the points $\left\{\left(x_{k}, y_{k}\right): k=0,1, \ldots, n\right\}$ is

$$
p(x)=c_{0}+c_{1}\left(x-x_{0}\right)+\cdots+c_{n}\left(x-x_{0}\right) \cdots\left(x-x_{n-1}\right)
$$

where $c_{0}=y_{0}, c_{1}=d y_{0}, \ldots, c_{n}=d^{n} y_{0}$ is the diagonal of the divided difference table

k	x	y	$d y$	$d^{2} y$	\cdots
0	x_{0}	y_{0}			
1	x_{1}	y_{1}	$d y_{0}=\left(y_{1}-y_{0}\right) /\left(x_{1}-x_{0}\right)$		
2	x_{2}	y_{2}	$d y_{1}=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$	$d^{2} y_{0}=\left(d y_{1}-d y_{0}\right) /\left(x_{2}-x_{0}\right)$	
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots

