]
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Q(cnt)=Y(1lo); '
end
% End of Nelder-Mead algorithm

J#Determine size of simplex |
snorm=0;
for j=1:n+1
s=norm(V(j)-V(10)); .
if (s>=snorm) F
SNOTm=s;
end
end
Q=Q’;
V0=V(lo,1:n);
y0=Y(lo);
dV=snorm;
dy=abs(Y(hi)-Y(1lo));
if (show==1)
disp(P);
disp(Q);
end

Exercises for Nelder-Mead and Powell’s Methods

1. Use Theorem 8.5 to find the local minimum of each of the following functions.
(@ fx.y)y=x"4y=3x-3y+5
(b) flx.y)=x>+y"+x—2y—xy+]1
(¢) filx,v) ZZXE}'+-X)£ — 3xy
d fx,y)=0-0/E+y2+2)
(€) flx.v)=100(y —xH)* + (1 —x)*
(Rosenbrock’s parabolic valley, circa 1960)
2. Llet B =(2.-3),G = (1,1), and W = (5, 2). Find the points M, R, and E and
sketch the triangles that are involved.
3. Let B=1(-1,2),G = (=2, =5),and W = (3, 1). Find the points M, R, and E and
sketch the triangles that are involved.
4. Let B=(0,0.0),G =(1,1,0), P = (0.0, 1), and W = (1,0, 0).
(a) Skeich the tetrahedron BGPW.
(by FindM =(B+ G+ P)/3.
(¢) Find R = 2M — W and sketch the tetrahedron BGPR.
(d) Find E = 2R — M and sketch the tetrahedron BGPE.
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Let B = (0,0,0), G = 0,2,0), P = (0, 1.1), and W = (2.1,0). Follow the
instructions in Exercise 4,

. Follow the process in Example 8.7 and find X; for f(x,¥y) = 4y =3x =3y 45

Use the initial point Py = (1/2, 1/3).

2

. Follow the process in Example 2.7 and find X; for f(x.y) =x"y+ xy* —3xy. Use

the initial point Py = (1/2. 1/3).

. Give a vector proof that M = (B 4+ G)/2is the midpoint of the line segment joining

the points B and G.

. Give a vector proof of equation (7).
10.
11.

Give a vector proof of equation (8).

Give a vector proof that the medians of any triangle intersect at a point that is two-
thirds of the distance from each vertex to the midpoint of the opposite side.

Algorithms and Programs

1.

Use Program 8.4 to find the minimum of each of the functions in Exercise 1 with an
accuracy of eight decimal places. Use the following starting vertices:

(a) (1,2).(2.0), and (2, 2)

() (0.0),(2,0), and (2, 1)

(¢) (0,0),(2,0),and (2. 1)

(d) (0.0).(0,1),and (1. 1)

(e) - (0,0),(1,0),and (0, 2)

. Use Program 8.4 to find the local minimum of each of the following functions with

an accuracy of eight decimal places.

(a) flx.y.2)= 2xt 4+ 3_\': B U o AR 4z
Start with (1, 1. 1), (0. 1. 0). € 1.0. 1), and (0.0, ).

by flx,vyv.z.u)= 2xT 4y + 2apy—x(yFz—uytyz- 3x — 8y —5z—9u
Start the search near (1. 1, 1, 1.

() flx,y.z,u)=xyzu~+ i + % + 1 =+ i

Start the search near (0.7, 0.7,0.7,0.7).

. Write a MATLAB program to implement Powell’s me thod.

. Use the program for Powell’s method (Problem 3) to find the local minimum of each

of functions in Problem 1 with an accuracy of seven decimal places. Use a starting
value near one of the given vertices.

. Use the program for Powell’s method (Problem 3) to find the local minimum of each
of functions in Problem 2 with an accuracy of seven decimal places. Use the starting
values or start near a vertex given in Problem 2.
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6. Find the point on the surface z = x2 + y2 that is closest to the point (2, 3, 1) with an
accuracy of seven decimal places.

7. A company has five factories A. B. C, D, and E, located at the points (10, 10),
(30, 50), (16.667,29), (0555, 29.888), and (22.2221, 49.988), respectively, in the
xy-plane. Assume that the distance between (wo points represents the driving dis-
tance, in miles, between the factories. The company plans to build a warchouse at
some point in the plane. It is anticipated that during an average week there will be 10,
18, 20, 14, and 25 deliveries made to factories A, B, C, D, and E, respectively. Ideally,
to minimize the weekly mileage of delivery vehicles, where should the warehouse be
located?

8. In Problem 7, where should the warehouse be located if, due to zoning restrictions, it
must be located at a point on the curve y = x%?

Gradient and Newton’s Methods

Now we turn to the minimization of a function f(X) of N variables, where X =
(x1,x2.....xy)and the partial derivatives of f are accessible.

Steepest Descent or Gradient Method

Definition 8.4. Letz = f(X)bea function of X such that 3f (X)/dxy exists for

k=1,2,.... N. The gradient of f, denoted by V f(X). is the vector
af (X) af(X) af(X)
(1) Vf(X):( f ) Y& ACIAN A
axy ax2 axN
Example 8.8. Find the gradient of f(x.y) = —-q—\_T\-— at the point (-3, —2).
x4y +2
Substituting x = —3 and y = —21nto
2 1 2 2
—xE g 2xy+y 42 —xt = 2xy 4y -2
(x.y) = YEVTE and [0V =
J‘.\(\ ,\) (_\_: ‘{_ ‘- +2)_ 1 f (" _\) (-\___ .+_ .\._ +2)‘1
yields
VF(=3,-2) = (fi(=3.=D). f (=3,-2) = (~q— __IEL =
JAm2 =) = AT s A “\225° 225)°

Recall that the gradient vector in (1) points Jocally in the direction of the greatest
rate of increase of f(X). Hence —V f(X) points locally in the direction of greatest
decrease. Start at the point Py and search along the line through Py in the direction
Sog=-Vf(Po)/ll — V £ (Po)|l. You will arrive at a point P, where a Jocal minimum
occurs when the point X is constrained to lie on the line X = Py + ySp. Since

_44
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h2=abs (hmin-2*h) ;
if (hO<h) ,h=h0;end
if (hi<h) ,h=hl;end
if (h2<h) ,h=h2;end
if (h==0) ,h=hmin;end
if (h<delta),cond=1;end
YTermination test for minimization
e0=abs (y0O-ymin) ;
el=abs(yl-ymin);
e2=abs (y2-ymin) ;
if (e0~=0&e0<err) ,err=e0;end
if (el~=0kel<err) ,err=el;end
if (e2~=0ke2<err) ,err=e2;end
if (e0==0&e ==0&e2==0) ,err=0;end
if(err<epsilon),cond=2;end
if(cond==2&h<delta),cond=3;end
end
cnt=cnt+i;
P(cnt+1,:)=[Pmin ymin];

PO=Pmin;

yO=ymin;

end

if (show==1)
disp(P);

end

Exercises for Gradient and Newton’s Methods

1. Find the gradient of each function at the given point.
(@) flx.y)=x>+y —3x-3y+5a(-1.2)
) flx,y) =100y —xH* + (1 = )2 at (1/2,4/3)
(Rosenbrock’s parabolic valley, circa 1960)
(¢) f(x,y, 2)=cos(xy)— sin(xz) at (0, w. w/2)
2. Use the gradient method to find P, and P, for the functions and initial points in
Exercise 1.
3. Find the Hessian matrix for the functions and initial points in Exercise 1.
4. Calculate the second-degree Taylor polynomial for the functions in Exercise 1, cen-
tered at the given initial points.
5. Use formula (10) to find Py and P, for the functions and initial points in Exercise 1.

6. Use the modified Newton’s method to find P for the functions and initial points in
Exercise 1.
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7. Verify that formula (3) 1s true for the function in Example 8.10.
8. Establish formula (7) for the case N = 2 (ie., z = flx1.x2))

9, Derive formula (8) from formula (7).

Algorithms and Programs

1. Use Program 3.5 to find the minimum of each of the functions in Exercise 1(a)
and 1(b) with an accuracy of eight decimal places. Use the initial point Po =
(0.3.0.4).

2. In Program 8.5 the x- and y-coordinates of the iterations ar¢ stored in the first two
columns of the matrix P, respectively. Modify Program 8.5 s0 that it will plot the .x-
and y-coordinates of the iterations on the same coordinate system. Hint. Incorporate
the command plot (P(:,1),P(:,2), 7. ») into your program. Use this program on
the functions in Exercise 1(a) and 1(b). Use the initial point Po = (—0.2.0.3)

3. Write a MATLAB progrant for Newton's method (formula (10)). Use the program to
find the minimum of each of the functions in Exercise 1(a) and 1(b) with an accuracy
of eight decimal places. Use the initial point Po = (0.3, 0.4).

4. Write a MATLAB program for the modified Newton's method.

n

. Use the program for the modified Newton’s method (Problem 4) t0 find the local
minimum of each of the following functions with an accuracy of eight decimal places.
(a) flx,y.2)= 22+ 2y + 2 —2xy+yz—Ty— 47 with Py = (0.5, 0.4.0.5)
b)) flx.y.z.u)= '2(.r2 + _\‘2’ +25+ udy —x(y+z—u)+yi- 3x — 8y —5z—9u

with Po = (1. 1, 1.1

. | T - i
(© flx,y z,u)=xyiu 4+ - 4+ —+4 -+ —with P, = (0.7.0.7.0.7, 0.7)
x v I H
6. Use Program 8.5 © find the local minimum of each of the functions in Problem 5
with an accuracy of eight decimal places. Use a starting value near one of the given
vertices.

o

7. Find the point, with an accuracy of seven decimal places. on the surface z = X"+ ¥
that is closest to the point (2,3. ).

2

8. A company has five factories, A, B. C, D, and E. located at the points (10, 10V,

(30, 50), (16.667, 20), (0.555.29.888), and (22, 2221.49.988), respectively. in the

xy-plane. Assume that the distance between tWo points represents the driving dis-
tance, in miles, between the factories. The company plans to build a warehouse at
some point in the plane. It is anticipated that during an average week there will be
10. 18, 20, 14, and 25 deliveries made to factories A, B, C. D, and E, respectively.
Ideally, to minimize the weekly mileage of delivery vehicles, where in the xy-plane
should the warehouse be located?

9. In Problem 8, where should the warehouse be Jocated if due to zoning restrictions, it
must be located at a point on the curve ¥ = x?
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h=abs(h);

hO=abs (hmin) ;
hl=abs(hmin-h);
h2=abs (hmin-2*h) ;

%Determine magnitude of next h

if (hO<h) ,h=h0;end

if(hi<h),h=hi;end

if (h2<h) ,h=h2;end

if (h==0) ,h=hmin;end

if (h<delta),cond=1;end

if (abs(h)>big|abs(pmin)>big),cond=5;end

YTermination test for minimization
e0=abs (y0-ymin) ;
el=abs(yl-ymin);
e2=abs (y2-ymin) ;
if (eQ~=0 & eO<err),err=e(;end
if(el~=0 & el<err),err=el;end
if(e2~=0 & 2<err),err=e2;end
if(e0~=0 & el==0 & e2==0),error=0;end
if (err<epsilon),cond=2;end
pO=pmin;
k=k+1;
P(k)=p0;
end
if (cond==2&h<delta),cond=3;end
end
P=p9;
dp=h;
yp=feval(f,p);
dy=err;

Exercises for Minimization of a Function of One Variable

1. Use Theorem 8.1 to determine where each of the following functions is increasing
and where it is decreasing.

(@) f(x)=2x3—9x>+12x -5
b)) fx)=x/(x+1)

© f)=«+1D/x

@ f(x)=x"
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. Use Definition 8.3 to show that the following functions are unimodal on the given

intervals.

(a) f(x)=x>—2x+1:[0,4]
)  f(x) =cos(x); [0.4]

(¢) f(x)=x":[0.1,10]

@ f)=-x3—x)"%10,3]

. Use Theorems 8.3 and 8.4, if possible, to find all local minima and maxima of each

of the following functions on the given interval.

(@) f(x)=4x>—8x?—11x+5:10,2]

(b) f(x)=x+3/x%105,3]

© fO)=@&+25/E—xH:[-19,19]

(d f(x)=e"/x%[05,3]

(e) f(x) = —sin(x) — sin(3x)/3: [0, 2]

(M  f(x) = —2sin(x) + sin(2x) — 2sin(3x)/3; [1, 3]

. Find the point on the parabola y = x? that is closest to the point (3, 1).

. Find the point on the curve y = sin(x) that is closest to the point (2, 1).

Find the point(s) on the circle x2 4 y2 = 25 that is farthest from the chord AB if
A=(3,4) and B = (—1, v24).

. Use the nnldcn ratio search and five-digit rounding arithmetic to find [ay, by] for

k = 0. 1. 2. for each of the following functions. Nore. Each function is unimodal on
the given mtcnal,

(a) fx)=¢e"+2x+ 7.[ 2.4, —1.6]

I.'_r

by flix)=- L;ml[).) —x+ 2. [0.8, 1.6]

() fx)= 7 — 4x — xcos(x): [0.5,2.5]
@ fx)=x>—=5x*+23;[1.5]

_ Use the Fibonacci search and five-digit rounding arithmetic to find [ay. by for k =

0. 1.2, for each of the functions in Exercise 7. In each case assume that Fp is the
smallest Fibonacci number satisfying a given tolerance €.

. Carry out two iterations of the quadratic approximation method, using five-digit round-

ing arithmetic, for each of the functions in Exercise 7.

Use the cubic search method and five-digit rounding arithmetic to find p; and p; for
each of the functions in Exercise 7.

The golden ratio search is applied to a function on the given interval. Determine the
length of the kth subinterval.

(a) [0,1]. k=4

(b) [-23,-1.6], k=3

(¢) [-4.6,35], k=10
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12. For each interval and value of € find the smallest Fibonacci number F, satisfying
inequality (7).
(@) [-0.1,34]. e =104
(b) [-23.53].e=10"6
(€) [3.33,3.99), ¢ = 1078
13. Algebraically establish the identity
1— Fn—.{'—] . Fn—k—}l
Frk Foi

14. Establish formulas (19), (20), and (21).

15. Establish formula (22).

16. Establish formula (23).

17. Dichotomous search method. The dichotomous search is another bracketing method
for determining the minimum of a unimodal function f on a closed interval [ag, by
without using derivatives. The values cg and dp are placed symmetrically at a dis-
tance € from the midpoint of the interval, (ag + by)/2. Depending on the values
of f(co) and f(dy) a new subinterval is obtained. The process is then repeated by
determining ¢ and d,.

Input: e, the distinguishability constant; and rol, the length of the final subinterval.
While by — a; > tol, let
.+ by ay + b
q:ﬂfume and d; = k7t O
2
If flcr) < f(dp), let apo; = a; and bit1 = di. Otherwise, let a., = ¢ and
bit) = by. Letk = k + 1 and continue loop.
(a) Use the dichotomous search and five-digit rounding arithmetic to find [a, by]
and [a, by ] for the function f(x) = € 4+2x+x2/2 on the interval [-24, -1.6].
Use the distinguishability constant € = 0.1.
(b)  Show that the length of the kth subinterval is given by
1 1"
by —ap = F(b(] —ap)+2 |1 - 2—;\—)
(e)  For the function in part (a) determine the value of k such that
b —a; < 107, where € = 1076,
18. Cubic bracketing search method. Assume that f is unimodal and differentiable on

the interval [aq. bg). Again, we consider a search method that explicitly uses f'. We
seek the abscissa of the minimum, Pmin, of a cubic polynomial that agrees with f and
/" at the endpoints ag and by. Let

P(x) =a(x — ao)3 + Bi(x — ao)z +y(x —ap) + p,

where Plag) = Slag). P(by) = S (bg)., P'lag) = f'(ag), and P'(by) = fl(bg). If
S(Pmin) > 0, then set b, = Pmin and a; = ag; else set a; = ppin and by = by.
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Continue the iteration process until the length of the kth subinterval is less than the
desired error: by — ay < €. As with the cubic search introduced in the text, it remains
to find explicit formulas for the coefficients «, g, ¥, and p.

- 2 _3
(a) Show that puyin = ao + B+ \/3"2 29V
(b) Show that p = P(ag) = f(ag) and y = P’(ap) = [’ (ag).

G —2D (bo) — f(ao)
(¢) Show that ¢y = ——— and 8 = 3D — G, where F = L(-ﬂ
0 — dg ) by — aq
F _ ~f . I
D— ¥ andG:j(o) f(au)_
by — ay by — agp

(d) Use the cubic bracketing search and five-digit rounding arithmetic to find [a, b1]
and [as, b>] for the function f(x) = e* 4+ 2x + x2/2 on the interval [ag. bo] =
[-2.4, —1.6].

igorithms and Programs

1. Use Program 8.1 to find the local minimum of each of the functions in Exercise 7
with an accuracy of six decimal places.

2. Use Program 8.2 to find the local minimum of each of the functions in Exercise 7
with an accuracy of six decimal places.

3. Use Program 8.3 to find the local minimum of each of the functions in Exercise 7
with an accuracy of six decimal places. Start with the midpoint of the given interval.

4. Use Program 8.1 and/or 8.3 to find all local maxima, with an accuracy of six decimal
places, of the function f(x) = cos2(x) — sin(x) on the interval [0, 2]

5. Use Program 8.1 and/or 8.3 to find all the local maxima and minima, with an accuracy
of six decimal places of the following function in the interval [0, 2].

P x?—12x - 12
2x0 — 3x3 — 4x* +9x2 4+ 12x — 18
6. Write a MATLAB program for the cubic approximation method presented in Section

8.1. Use the program to find the local minimum of each of the functions in Exercise
7 with an accuracy of six decimal places.

fx)=

7. Write a MATLAB program for the dichotomous search method in Exercise 17. Use
the program to find the local minimum of each of the functions in Exercise 7 with an
accuracy of six decimal places.

8. Use Program 8.1 and/or 8.3 to find all the local maxima and minima with an accuracy
of six decimal places, of the:

(a) extrapolated cubic spline that passes through (0.0, 0.0), (1.0,0.5), (2.0, 2.0),
and (3.0, 1.5).

(b) parabolically terminated cubic spline that passes through (0.0, 0.0), (1.0, 0.5),
(2.0, 2.0), and (3.0, 1.5).
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9. Use Program 8.1 and/or 8.3 to find all the local maxima and minima with an accu-

racy of six decimal places, of the trigonometric polynomial T7 (x) from Section 5.4,
Algorithms and Programs, Problem 5(b).

8.2 Nelder-Mead and Powell’s Methods

The definitions in Section 8.1 extend naturally to functions of several variables. Sup-
pose that f(xi.x2. ..., xn) is defined in the region

N
(1) R = (xl,,xg,....x;\r):Z(.xk—pk}2<r2 .
k=1
The function f(x1,x2,...,Xxy) has a local minimum at the point (p1, p2,-... PN)
provided that
(2) f(pl, P2yeens _DN) = f[.‘l‘l X2, . JXN)
for each point (x1,x2, ... xx) € R. The function f(xy,x2, ..., xy) has a local max-
imum at the point (p1, P2, -+ PN) provided that
(3) F(p1.pae--vs PN) = FOX1, X2, 000 XN)
or each point (x1, x2, ..., XN) € R.

The introduction of minimization methods for multivariable functions will be simpi-
fied by considering functions of two independent variables. f(x.¥). The graph of a
function of two independent variables can be interpreted geometrically as a surface
(see Figure 8.1). The second partial derivative test for an extreme value of a function
f(x,y) is an extension of Theorem 8.4.

Theorem 8.5 (Second Partial Derivative Test). Assume that f(x,y) and its first-
and second-order partial derivatives are continuous ona region R. Suppose that (p, ¢) €
R is a critical point where both fx(p. q) = 0and fy(p,q) =0. The higher-order par-
tial derivatives are used to determine the nature of the critical point.

@ IF Forp, @) fos (P @) — F2(poq) > 0and fex(p.g) > 0. then f(p,q)isa
local minimum of f.

(i) If fux(p.@) fry(P.q) — fA(p,q) > 0and fix(p.q) < 0, then f(p,q) 1sa
local maximum of f.

(i) If fix(p, @) frv(pP @) — f:j‘,(p,q) < 0, then f(x,y) does not have a local ex-
tremum at (p, ¢)-

(iv) If fox (P, @) fry(Peq@) — _f_f_\\(p‘ q) = 0, then this test is inconclusive.



