Math 450: Mathematics for Multimedia

Practice Midterm Examination

Friday, 14 March 2014

No materials other than this test and a pen or pencil are permitted. Please write your complete answers in the space provided.

- 1. (a) How many integers in the set $\{0, 1, \dots, 54\}$ are relatively prime with 55?
 - (b) Find an integer $x \in \{0, 1, \dots, 54\}$ such that $7^{120} \equiv x \pmod{55}$.
- 2. Express the number x = 6.666... (base 16) as a decimal expansion in base 10.
- 3. Suppose that \mathbf{x}, \mathbf{y} are vectors in an inner product space \mathbf{X} , with $\langle \mathbf{x}, \mathbf{y} \rangle = 6$ and $\|\mathbf{x}\| = 3$.
 - (a) What is the minimum possible value of $\|\mathbf{y}\|$?
 - (b) What is the minimum possible value of $\|\mathbf{x} + \mathbf{y}\|$?
 - (c) What is the minimum possible value of $\|\mathbf{x} \mathbf{y}\|$?
 - (d) Given a fixed L, find vectors $\mathbf{x}, \mathbf{y} \in \mathbf{R}^2$ satisfying the given conditions plus $\|\mathbf{y}\| > L$.
- 4. Let X be an n-dimensional inner product space with basis $\mathbf{B} = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}$. Suppose that $\mathbf{B}' = {\mathbf{b}'_1, \mathbf{b}'_2, \dots, \mathbf{b}'_n}$ is the biorthogonal dual basis for **B**. Let $Y = \text{span} {\mathbf{b}_n}$. Find a basis for Y^{\perp} .
- 5. Suppose that $A \in Mat(N \times N)$ is an upper triangular matrix with zeros on the main diagonal, namely, $A_{ij} = 0$ for all $1 \le j \le i \le N$.
 - (a) Show that A^2 has zeros on the main diagonal.

(b) Show that A^N must be the zero matrix. (Hint: use induction, noticing that if $\mathbf{x} \in \mathbf{R}^N$ has zeros in its last n coordinates, then $A\mathbf{x}$ has zeros in its last n + 1 coordinates.)

- 6. Let $T: \mathbf{R}^2 \to \mathbf{R}^2$ be the linear transformation defined by T(x, y) = (x + 2y, 2x y).
 - (a) Compute T^* with respect to the usual inner products.
 - (b) Compute $||T||_{op}$ with respect to the usual Euclidean norms.
- 7. Find the complex exponential Fourier series of the 1-periodic function $\sin^2(\pi kt)$, where k > 0 is an integer.
- 8. Suppose that $\phi = \phi(x)$ has Fourier integral transform

$$\mathcal{F}\phi(\xi) = \begin{cases} 1, & \text{if } 0 < \xi < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Use the Fourier inversion theorem to compute $\phi(x)$ at all $x \in \mathbf{R}$.