Ma 450: Mathematics for Multimedia Homework Assignment 2

Prof. Wickerhauser

Due Sunday, February 19th, 2023

1. Let N be a fixed positive integer.
(a) How many vertices are there in the unit cube in Euclidean N-space?
(b) Fix a vertex in the N-cube. How may other vertices are connected to it by single edges?
(c) Use parts a and b to count the total number of edges in the N-cube.
2. Let $\mathbf{P}, \mathbf{Q}, \mathbf{S}$ be subspaces of \mathbf{R}^{N} with respective dimensions p, q, s. Suppose that $\mathbf{S}=\mathbf{P}+\mathbf{Q}$.
(a) Prove that $\max \{p, q\} \leq s \leq p+q$.
(b) Find an example that achieves the equality $s=\max \{p, q\}$.
(c) Find an example that achieves the equality $s=p+q$.
3. Prove Inequality 2.15 for every N.
4. Prove that $\|\mathbf{x}-\mathbf{y}\| \geq|\|\mathbf{x}\|-\|\mathbf{y}\||$ for any vectors \mathbf{x}, \mathbf{y} in a normed vector space \mathbf{X}.
5. Suppose that \mathbf{Y} is an m-dimensional subspace of an N-dimensional inner product space \mathbf{X}. Prove that \mathbf{Y}^{\perp} is at most $N-m$ dimensional.
6. Suppose that $\mathbf{Y}=\operatorname{span}\left\{\mathbf{y}_{n}: n=1, \ldots, N\right\}$ and $\mathbf{Z}=\operatorname{span}\left\{\mathbf{z}_{m}: m=1, \ldots, M\right\}$ are subspaces in an inner product space \mathbf{X}. Show that if $\left\langle\mathbf{y}_{n}, \mathbf{z}_{m}\right\rangle=0$ for all n, m, then $\mathbf{Y} \perp \mathbf{Z}$.
7. Find an orthonormal basis for the subspace of \mathbf{E}^{4} spanned by the vectors $\mathbf{x}=(1,0,0,0), \mathbf{y}=(1,0,1,0)$, and $\mathbf{z}=(1,1,1,0)$.
8. Find the biorthogonal dual of the basis $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$ of \mathbf{E}^{3}.
9. Confirm, by checking the necessary properties, that the inner product on Poly given by

$$
\langle p, q\rangle \stackrel{\text { def }}{=} \sum_{k} \bar{a}_{k} b_{k}
$$

is Hermitean symmetric, nondegenerate, and linear. Here $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, q(x)=$ $b_{0}+b_{1} x+\cdots+b_{m} x^{m}$, and the sum is over all nonzero terms $\bar{a}_{k} b_{k}$. Note that this inner product defines the derived norm in Equation 2.21.
10. Show that $\|T\|_{\text {op }}$ is infinite for $T:$ Poly \rightarrow Poly defined by $T p(x)=\frac{d}{d x} p(x)$ (the derivative), with respect to the norm in Equation 2.21.
11. Suppose that A is an $N \times N$ matrix satisfying $A^{k}=I d$ for some integer $k>0$. Prove that $\|A\|_{\mathrm{HS}} \geq 1$.
12. Can there be matrices $A, B \in \operatorname{Mat}(N \times N)$ satisfying $A B-B A=I d$?
13. Determine whether the linear transformation $T: \ell^{2} \rightarrow \ell^{2}$ defined by

$$
T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1}, \frac{x_{2}+x_{3}}{2}, \frac{x_{4}+x_{5}+x_{6}}{3}, \ldots\right)
$$

is bounded or unbounded.
14. Given a matrix $A=\left(\begin{array}{cc}x & y \\ z & w\end{array}\right)$, find a Givens rotation G such that $G A$ is upper triangular.
15. Suppose that A and B are $N \times N$ matrices satisfying the condition $A(i, j)=B(i, j)=0$ if $i>j$. Prove that their product satisfies the same condition. (This shows that the product of upper-triangular matrices is upper-triangular.)

