Ma 450: Mathematics for Multimedia Homework Assignment 3

Prof. Wickerhauser

Due Sunday, March 5th, 2023

1. Suppose that $f(t)=t^{2}$ if $-1 \leq t<1$, and $f(t)=0$ for all $t \notin[-1,1)$. Find $f_{1}(t)$, the 1-periodization of f.
2. Define the reflection R to be the transformation $R u(t) \stackrel{\text { def }}{=} u(-t)$ acting on the vector space of functions of one real variable. Let F be the fraying operator of Equation 3.14.
(a) Show that R is a linear transformation.
(b) Find a formula for the compositions $R F, F R$, and $R F R$.
3. Show that the set of functions $\{\sqrt{2} \sin \pi n t: n=1,2, \ldots\}$ is orthonormal with respect to the inner product

$$
\langle f, g\rangle \stackrel{\text { def }}{=} \int_{0}^{1} f(t) g(t) d t
$$

That is, show that

$$
\langle\sqrt{2} \sin \pi n t, \sqrt{2} \sin \pi m t\rangle= \begin{cases}0, & \text { if } n \neq m \\ 1, & \text { if } n=m\end{cases}
$$

for all $n, m \in \mathbf{Z}^{+}$.
4. Compute the sine-cosine Fourier series of the 1-periodic function $f(x)=\cos ^{2}(5 \pi x)$. (Hint: use a trigonometric identity.)
5. Show that if $|c(n)|<2^{-|n|}$ for all integers $n \neq 0$, then the 1-periodic function $f=f(t)$ which is the inverse Fourier transform of the sequence $\{c(n)\}$ must have a continuous $d^{\text {th }}$ derivative for every positive integer d.
6. Suppose that ϕ has Fourier integral transform $\mathcal{F} \phi$.
(a) Fix $k \in \mathbf{R}$ and let $\phi_{k}(x) \stackrel{\text { def }}{=} \phi(x+k)$. Show that $\mathcal{F} \phi_{k}(\xi)=e^{2 \pi i k \xi} \mathcal{F} \phi(\xi)$.
(b) Fix $a>0$ and let $\phi_{a}(x) \stackrel{\text { def }}{=} \phi(a x)$. Show that $\mathcal{F} \phi_{a}(\xi)=\frac{1}{a} \mathcal{F} \phi(\xi / a)$.
7. Compute the inverse Fourier integral transform of the function

$$
\psi(\xi)= \begin{cases}1, & \text { if }-2 \leq \xi<-1 \text { or } 1<\xi \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

(Hint: notice that $\psi(\xi)=\mathbf{1}_{I}(\xi / 4)-\mathbf{1}_{I}(\xi / 2)$, where $I=\left[-\frac{1}{2}, \frac{1}{2}\right]$.)
8. Compute the Fourier integral transform of the bump function

$$
b(x)= \begin{cases}2-2|x|, & \text { if }-1 \leq x<-\frac{1}{2} \text { or } \frac{1}{2}<x \leq 1 \\ 1, & \text { if }-\frac{1}{2} \leq x \leq \frac{1}{2} \\ 0, & \text { otherwise }\end{cases}
$$

9. Show that the vectors $\bar{\omega}_{n} \in \mathbf{C}^{N}, n=0,1, \ldots, N-1$ defined by $\bar{\omega}_{n}(k)=\exp (-2 \pi i n k / N)$ form an orthonormal basis with respect to the inner product

$$
\langle f, g\rangle \stackrel{\text { def }}{=} \frac{1}{N} \sum_{k=0}^{N-1} \overline{f(k)} g(k) .
$$

10. Write out explicitly the matrices for the 3×3 discrete inverse Fourier and Hartley transforms (F_{3}^{-1} and H_{3}^{-1}).
11. What is the matrix $\left(C_{N}^{I V}\right)^{2}$ of the square of $N \times N$ DCT-IV? Give a formula for every positive integer N.
