Ma 450: Mathematics for Multimedia Homework Assignment 3

Prof. Wickerhauser

Due Sunday, March 5th, 2023

- 1. Suppose that $f(t) = t^2$ if $-1 \le t < 1$, and f(t) = 0 for all $t \notin [-1, 1)$. Find $f_1(t)$, the 1-periodization of f.
- 2. Define the reflection R to be the transformation $Ru(t) \stackrel{\text{def}}{=} u(-t)$ acting on the vector space of functions of one real variable. Let F be the fraying operator of Equation 3.14.
 - (a) Show that R is a linear transformation.
 - (b) Find a formula for the compositions RF, FR, and RFR.
- 3. Show that the set of functions $\{\sqrt{2}\sin \pi nt : n = 1, 2, ...\}$ is orthonormal with respect to the inner product

$$\langle f,g \rangle \stackrel{\text{def}}{=} \int_0^1 f(t)g(t) \, dt.$$

That is, show that

$$\left\langle \sqrt{2}\sin \pi nt, \sqrt{2}\sin \pi mt \right\rangle = \begin{cases} 0, & \text{if } n \neq m, \\ 1, & \text{if } n = m, \end{cases}$$

for all $n, m \in \mathbf{Z}^+$.

- 4. Compute the sine-cosine Fourier series of the 1-periodic function $f(x) = \cos^2(5\pi x)$. (Hint: use a trigonometric identity.)
- 5. Show that if $|c(n)| < 2^{-|n|}$ for all integers $n \neq 0$, then the 1-periodic function f = f(t) which is the inverse Fourier transform of the sequence $\{c(n)\}$ must have a continuous d^{th} derivative for every positive integer d.
- 6. Suppose that ϕ has Fourier integral transform $\mathcal{F}\phi$.
 - (a) Fix $k \in \mathbf{R}$ and let $\phi_k(x) \stackrel{\text{def}}{=} \phi(x+k)$. Show that $\mathcal{F}\phi_k(\xi) = e^{2\pi i k \xi} \mathcal{F}\phi(\xi)$.
 - (b) Fix a > 0 and let $\phi_a(x) \stackrel{\text{def}}{=} \phi(ax)$. Show that $\mathcal{F}\phi_a(\xi) = \frac{1}{a}\mathcal{F}\phi(\xi/a)$.
- 7. Compute the inverse Fourier integral transform of the function

$$\psi(\xi) = \begin{cases} 1, & \text{if } -2 \le \xi < -1 \text{ or } 1 < \xi \le 2; \\ 0, & \text{otherwise.} \end{cases}$$

(Hint: notice that $\psi(\xi) = \mathbf{1}_I(\xi/4) - \mathbf{1}_I(\xi/2)$, where $I = [-\frac{1}{2}, \frac{1}{2}]$.)

8. Compute the Fourier integral transform of the bump function

$$b(x) = \begin{cases} 2-2|x|, & \text{if } -1 \le x < -\frac{1}{2} \text{ or } \frac{1}{2} < x \le 1; \\ 1, & \text{if } -\frac{1}{2} \le x \le \frac{1}{2}; \\ 0, & \text{otherwise.} \end{cases}$$

9. Show that the vectors $\bar{\omega}_n \in \mathbf{C}^N$, $n = 0, 1, \dots, N - 1$ defined by $\bar{\omega}_n(k) = \exp(-2\pi i nk/N)$ form an orthonormal basis with respect to the inner product

$$\langle f,g \rangle \stackrel{\text{def}}{=} \frac{1}{N} \sum_{k=0}^{N-1} \overline{f(k)} g(k).$$

- 10. Write out explicitly the matrices for the 3×3 discrete inverse Fourier and Hartley transforms $(F_3^{-1}$ and $H_3^{-1})$.
- 11. What is the matrix $(C_N^{IV})^2$ of the square of $N \times N$ DCT-IV? Give a formula for every positive integer N.