Ma 450: Mathematics for Multimedia Homework Assignment 5

Prof. Wickerhauser

Due Sunday, April 16th, 2023

All solutions are worth 10 points.

1. Draw the graphs of $w(t), w(t / 2)$, and $w(3 t)$ on one set of axes for the Haar function $w(t)$ defined in Equation 5.2.
2. Draw the graphs of $w\left(\frac{t}{3}-4\right)$ and $w\left(\frac{t-4}{3}\right)$ on one set of axes for the Haar function $w(t)$ defined in Equation 5.2.
3. Let $f=f(\mathbf{a})=f(a, b)$ be the function on Aff defined by $f(\mathbf{a})=\mathbf{1}_{D}(\mathbf{a})$, where $\mathbf{1}_{D}$ is the indicator function of the region $D=\left\{\mathbf{a}=(a, b): A<a<A^{\prime}, B<b<B^{\prime}\right\} \subset$ Aff for $0<A<A^{\prime}$ and $-\infty<B<B^{\prime}<\infty$. Evaluate $\int_{\mathbf{A f f}} f(\mathbf{a}) d \mathbf{a}$ using the normalized left-invariant integral on Aff.
4. Let $w=w(t)$ be the Haar mother function and define

$$
\phi_{M, K}^{J}(t) \stackrel{\text { def }}{=} \sum_{j=M+1}^{M+J} \frac{1}{2^{j}} w\left(\frac{t-K}{2^{j}}\right)
$$

for arbitrary fixed $K \in \mathbf{R}$ and $M, J \in \mathbf{Z}$ with $J>0$.
a. Show that

$$
\lim _{J \rightarrow \infty} \phi_{M, K}^{J}(t)=2^{-M} \mathbf{1}_{\left[K, K+2^{M}\right)}(t) \stackrel{\text { def }}{=} \phi_{M, K}(t),
$$

b. Show that $\left\langle\phi_{M, K}^{J}, u\right\rangle \rightarrow\left\langle\phi_{M, K}, u\right\rangle$ as $J \rightarrow \infty$ for any function $u \in L^{2}(\mathbf{R})$.
(Hint: use Equation 5.4 and Lemma 5.1.)
5. Compute $\|w\|$, where

$$
\mathcal{F} w(\xi)= \begin{cases}e^{-(\log \xi)^{2}}, & \text { if } \xi>0 \\ 0, & \text { if } \xi \leq 0\end{cases}
$$

(Hint: use Plancherel's theorem and Equation B. 6 in Appendix B.)
6. Let w be the function defined by

$$
\mathcal{F} w(\xi)= \begin{cases}e^{-(\log |\xi|)^{2}}, & \text { if } \xi \neq 0 \\ 0, & \text { if } \xi=0\end{cases}
$$

Show that w is admissible and compute its normalization constant c_{w}.
7. Fix $A<0, B>0$, and $R>1$ and suppose that $w=w(x)$ is a function satisfying $\mathcal{F} w(\xi)=1$ if $R A<\xi<A$ or $B<\xi<R B$, with $\mathcal{F} w(\xi)=0$, otherwise.
a. Show that w satisfies the admissibility condition of Theorem 5.2, and compute the normalization constant c_{w}.
b. Give a formula for w.
8. Find a real-valued orthogonal low-pass CQF of length 4 satisfying the antisymmetry condition $h(0)=-h(3)$ and $h(1)=-h(2)$, or prove that none exist.
9. Find a real-valued orthogonal low-pass CQF of length 4 satisfying the symmetry condition $h(0)=h(3)$ and $h(1)=h(2)$, or prove that none exist.
10. Suppose that an orthogonal MRA has a scaling function ϕ satisfying $\phi(t)=0$ for $t \notin[a, b]$. Prove that the low-pass filter h for this MRA must satisfy $h(n)=0$ for all $n \notin[2 a-b, 2 b-a]$. (This makes explicit the finite support of h in Equation 5.36.)
11. Suppose that $h=\{h(k): k \in \mathbf{Z}\}$ and $g=\{g(k): k \in \mathbf{Z}\}$ satisfy the orthogonal CQF conditions. Show that the 2-periodizations h_{2}, g_{2} of h and g are the Haar filters. Namely, show that $h_{2}(0)=h_{2}(1)=g_{2}(0)=-g_{2}(1)=1 / \sqrt{2}$.
12. Let ϕ be the scaling function of an orthogonal MRA, and let ψ be the associated mother function. For $(x, y) \in \mathbf{R}^{2}$, define

$$
\begin{array}{ll}
e_{0}(x, y)=\phi(x) \phi(y), & e_{1}(x, y)=\phi(x) \psi(y) \\
e_{2}(x, y)=\psi(x) \phi(y), & e_{3}(x, y)=\psi(x) \psi(y)
\end{array}
$$

Prove that the functions $\left\{e_{n}: n=0,1,2,3\right\}$ are orthonormal in $L^{2}\left(\mathbf{R}^{2}\right)$, the inner product space of square-integrable functions on \mathbf{R}^{2}.

