Ma 450: Mathematics for Multimedia Homework Assignment 5

Prof. Wickerhauser

Due Sunday, April 16th, 2023

All solutions are worth 10 points.

- 1. Draw the graphs of w(t), w(t/2), and w(3t) on one set of axes for the Haar function w(t) defined in Equation 5.2.
- 2. Draw the graphs of $w(\frac{t}{3}-4)$ and $w(\frac{t-4}{3})$ on one set of axes for the Haar function w(t) defined in Equation 5.2.
- 3. Let $f = f(\mathbf{a}) = f(a, b)$ be the function on Aff defined by $f(\mathbf{a}) = \mathbf{1}_D(\mathbf{a})$, where $\mathbf{1}_D$ is the indicator function of the region $D = \{\mathbf{a} = (a, b) : A < a < A', B < b < B'\} \subset Aff$ for 0 < A < A' and $-\infty < B < B' < \infty$. Evaluate $\int_{Aff} f(\mathbf{a}) d\mathbf{a}$ using the normalized left-invariant integral on Aff.
- 4. Let w = w(t) be the Haar mother function and define

$$\phi_{M,K}^J(t) \stackrel{\text{def}}{=} \sum_{j=M+1}^{M+J} \frac{1}{2^j} w\left(\frac{t-K}{2^j}\right)$$

for arbitrary fixed $K \in \mathbf{R}$ and $M, J \in \mathbf{Z}$ with J > 0.

a. Show that

$$\lim_{J\to\infty}\phi^J_{M,K}(t) = 2^{-M}\mathbf{1}_{[K,K+2^M)}(t) \stackrel{\text{def}}{=} \phi_{M,K}(t),$$

b. Show that $\left\langle \phi_{M,K}^{J}, u \right\rangle \to \left\langle \phi_{M,K}, u \right\rangle$ as $J \to \infty$ for any function $u \in L^{2}(\mathbf{R})$. (Hint: use Equation 5.4 and Lemma 5.1.)

5. Compute ||w||, where

$$\mathcal{F}w(\xi) = \begin{cases} e^{-(\log \xi)^2}, & \text{if } \xi > 0; \\ 0, & \text{if } \xi \le 0. \end{cases}$$

(Hint: use Plancherel's theorem and Equation B.6 in Appendix B.)

6. Let w be the function defined by

$$\mathcal{F}w(\xi) = \begin{cases} e^{-(\log|\xi|)^2}, & \text{if } \xi \neq 0; \\ 0, & \text{if } \xi = 0. \end{cases}$$

Show that w is admissible and compute its normalization constant c_w .

7. Fix A < 0, B > 0, and R > 1 and suppose that w = w(x) is a function satisfying $\mathcal{F}w(\xi) = 1$ if $RA < \xi < A$ or $B < \xi < RB$, with $\mathcal{F}w(\xi) = 0$, otherwise.

a. Show that w satisfies the admissibility condition of Theorem 5.2, and compute the normalization constant c_w .

b. Give a formula for w.

- 8. Find a real-valued orthogonal low-pass CQF of length 4 satisfying the antisymmetry condition h(0) = -h(3) and h(1) = -h(2), or prove that none exist.
- 9. Find a real-valued orthogonal low-pass CQF of length 4 satisfying the symmetry condition h(0) = h(3) and h(1) = h(2), or prove that none exist.
- 10. Suppose that an orthogonal MRA has a scaling function ϕ satisfying $\phi(t) = 0$ for $t \notin [a, b]$. Prove that the low-pass filter h for this MRA must satisfy h(n) = 0 for all $n \notin [2a b, 2b a]$. (This makes explicit the finite support of h in Equation 5.36.)
- 11. Suppose that $h = \{h(k) : k \in \mathbb{Z}\}$ and $g = \{g(k) : k \in \mathbb{Z}\}$ satisfy the orthogonal CQF conditions. Show that the 2-periodizations h_2, g_2 of h and g are the Haar filters. Namely, show that $h_2(0) = h_2(1) = g_2(0) = -g_2(1) = 1/\sqrt{2}$.
- 12. Let ϕ be the scaling function of an orthogonal MRA, and let ψ be the associated mother function. For $(x, y) \in \mathbf{R}^2$, define

$$e_0(x,y) = \phi(x)\phi(y),$$
 $e_1(x,y) = \phi(x)\psi(y)$
 $e_2(x,y) = \psi(x)\phi(y),$ $e_3(x,y) = \psi(x)\psi(y).$

Prove that the functions $\{e_n : n = 0, 1, 2, 3\}$ are orthonormal in $L^2(\mathbf{R}^2)$, the inner product space of square-integrable functions on \mathbf{R}^2 .