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0.1 Kalman Filtering

A common problem in estimation is deciding how to update an estimate after
a new measurement. The new estimate should combine information from both
the old estimate and the new measurement, each given appropriate weight. An
optimal choice of weights is that which most reduces the uncertainty in the updated
estimate.

For a simple example, let {xi : i = 1, 2, . . .} be a sequence of measurements of
quantity x ∈ R, each with an independent zero-mean, unit-variance normal error:

xi = x + ri, ri ∼ N(0, 1), i = 1, 2, . . .

The Cramér-Rao lower bound implies that after n measurements, the minimum
variance of any estimator x̂n for x is 1/n. This is attained by the average,

x̂n
def=

1
n

n∑
i=1

xi,

which satisfies x̂n ∼ N(x, 1/n) by the Central Limit Theorem. Rewriting gives:

x̂n =
1
n

n∑
i=1

xi =
n− 1

n
x̂n−1 +

1
n

xn =
1
n

[
x̂n−1

1/(n− 1)
+

xn

1

]
.

This decomposition shows how both the new measurement xn and the prior esti-
mate x̂n−1 are normalized by dividing by their respective variances, then averaged
to give the updated estimate. But another decomposition suggests a different in-
terpretation:

x̂n = x̂n−1 +
1
n

[xn − x̂n−1]
def= x̂n−1 + Kn [xn − x̂n−1] ,

where xn − x̂n−1 is the innovation, the difference between the new measurement
and the prior estimate, and Kn is the Kalman gain, a weighting factor applied to
the innovation when updating the estimate. The Kalman gain may be written as
a ratio of variances:

Kn =
Var(x̂n−1)

Var(xn − x̂n−1)
=

Var(x̂n−1)
Var(rn) + Var(x̂n−1)

=
1/(n− 1)

1 + 1/(n− 1)
=

1
n

.

In this simple example, it is easy to find the optimal updating formula and the
Kalman gain because the optimal estimate and its uncertainty are known.

By using matrix algebra and matrix calculus, we may generalize this idea to
vectors x. Moreover, we will allow x to evolve with some randomness, giving
a sequence of unknown state vectors {x0,x1,x2, . . .} ⊂ Rd that are each to be
estimated. The observations will be, in the generalization, a sequence of vectors
{y1,y2, . . .} ⊂ Rp that depend on the state vectors in a known way but that have
random measurement errors. Our goal is to construct an optimal estimator x̂n of
xn, using the previous estimator x̂n−1 updated by the measurement yn. This will
be done recursively as in the simple example, using an optimal Kalman gain Kn

that is a matrix version of the ratio of variances.
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0.1.1 Covariance matrices

Let x ∈ Rd be a random vector, and suppose that each component x(i), for
i = 1, . . . , d, is a random variable with finite mean E(x(i)) and finite variance
Var(x(i)) = E([x(i)−E(x(i))]2). Denote the vector of these means by E(x) ∈ Rd.

Writing x′ def= x − E(x), the zero-mean random vector obtained from x by
subtracting its mean, we have Var(x(i)) = Var(x′(i)) = E(x′(i)2) for every i. Then
quadratic functions of x may be described using covariances,

cov(x(i),x(j)) def= E(x′(i)x′(j) ), i, j = 1, . . . , d.

Thinking of x as a d × 1 matrix, the (i, j) covariance term will be the expected
value of the (i, j) entry in the d× d matrix x′x′T . We may therefore generalize the
notion of variance to vector-valued random variables as follows:

Var(x) def= E(x′x′T ) = E(

 x′(1)
...

x′(d)

 (
x′(1) · · · x′(d)

)
)

= E

 x′(1)2 · · · x′(1)x′(d)
...

. . .
...

x′(d)x′(1) · · · x′(d)2



=

 E(x′(1)2) · · · E(x′(1)x′(d))
...

. . .
...

E(x′(d)x′(1)) · · · E(x′(d)2)



=

 Var(x(1)) · · · cov(x(1),x(d))
...

. . .
...

cov(x(d),x(1)) · · · Var(x(d))


Get the diagonal terms using the relation Var(y) = cov(y, y). Likewise, Var(x)
collapses to the original definition of Var(x) for scalar random variables x ∈ R.

The size of the variance matrix for x ∈ Rd is controlled by its trace:

trVar(x) =
d∑

i=1

Var(x(i)) =
d∑

i=1

E(x′(i)2).

That is because the diagonal terms dominate the off-diagonal terms:

Theorem 0.1 If the components of random vector x : Ω → Rd have finite means
and variances, then

‖Var(x)‖HS ≤ trVar(x),

where ‖·‖HS is the Hilbert-Schmidt norm.



0.1. Kalman Filtering 3

Proof: Since x(i) and x(j) have finite variances, they are square-integrable over Ω
and thus belong to the inner product space L2(Ω) with inner product 〈y, z〉 def= E(yz)
and derived norm ‖y‖ def= E(y2). Then the Cauchy–Schwarz inequality implies that

|E(x′(i)x′(j))| = | 〈x′(i),x′(j)〉 | ≤ ‖x′(i)‖ ‖x′(j)‖ =
√

E(x′(i)2)
√

E(x′(j)2).

Summing E(x′(i)x′(j))2 over i, j = 1, . . . , d and taking square roots gives ‖Var(x)‖2HS

on the left and [trVar(x)]2 on the right. 2

Since ‖·‖HS is comparable to every other norm on the finite-dimensional space Rd×d,
every norm on Var(x) is dominated by a multiple of tr Var(x).

We may also generalize the notion of covariance to pairs of random vectors
x ∈ Rd and y ∈ Rp:

cov(x,y) def= E(x′y′T ) = E(

 x′(1)
...

x′(d)

 (
y′(1) · · · y′(p)

)
)

= E

 x′(1)y′(1) · · · x′(1)y′(p)
...

. . .
...

x′(d)y′(1) · · · x′(d)y′(p)



=

 E(x′(1)y′(1)) · · · E(x′(1)y′(p))
...

. . .
...

E(x′(d)y′(1)) · · · E(x′(d)y′(p))



=

 cov(x(1),y(1)) · · · cov(x(1),y(p))
...

. . .
...

cov(x(d),y(1)) · · · cov(x(d),y(p))

 ,

which is a d × p matrix. Argument order matters in the matrix case: cov(y,x) =
cov(x,y)T is a p× d matrix. Note that Var(x) = cov(x,x), as in the scalar case.

A constant vector b ∈ Rd may be regarded as a random vector with mean
E(b) = b and variance Var(b) = Var(0) = 0, since b′ = 0.

We say that two random variables x, y ∈ R are uncorrelated if and only if
cov(x, y) = E(x′y′) = 0. That relationship is preserved by affine transformations:

Lemma 0.2 If x, y ∈ R are uncorrelated random variables and a, b ∈ R are con-
stants, then ax + b and y are also uncorrelated random variables.

Proof: Note that

[ax + b]′ = ax + b− E(ax + b) = ax + b− [aE(x) + b] = a[x− E(x)] = ax′.

Thus cov(ax + b, y) = E([ax + b]′y′) = E(ax′y′) = aE(x′y′) = a cov(x, y) = 0. 2
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Lemma 0.3 If x and y are uncorrelated random variables, then E(xy) = E(x)E(y).

Proof: Since x = x′ + E(x) and y = y′ + E(y), compute

E(xy) = E([x′ + E(x)][y′ + E(y)]) = E(x′y′ + y′E(x) + x′E(y) + E(x)E(y))
= E(x′y′) + E(y′)E(x) + E(x′)E(y) + E(x)E(y) = E(x)E(y),

since E(x′) = E(y′) = E(x′y′) = 0. 2

Say that random vectors x ∈ Rd and y ∈ Rp are uncorrelated if and only if
all pairs of their coordinates x(i),y(j), i = 1, . . . , d, j = 1, . . . , p, are uncorrelated
random variables. Since cov(x(i),y(j)) = 0 for all i, j, this is equivalent to the
vanishing of their d× p and p× d covariance matrices:

cov(x,y) = E(x′y′T ) = 0; cov(y,x) = E(y′x′T ) = 0. (1)

Lemma 0.4 If x,y ∈ Rd are uncorrelated random vectors, then Var(x ± y) =
Var(x) + Var(y).

Proof: First note that

(x± y)′ = x± y − E(x± y) = [x− E(x)]± [y − E(y)] = x′ ± y′.

Thus

Var(x± y) = E((x′ ± y′)(x′ ± y′)T )
= E(x′x′T + y′y′T ± x′y′T ± y′x′T )
= E(x′x′T ) + E(y′y′T )± E(x′y′T )± E(y′x′T )
= Var(x) + Var(y)± cov(x,y)± cov(y,x) = Var(x) + Var(y).

The last two covariances are zero by Equation 1. 2

Lemma 0.5 If x ∈ Rd is a random vector, A ∈ Rp×d is a fixed p× d matrix, and
b ∈ Rp is a fixed vector, then

Var(Ax + b) = A Var(x) AT .

Proof: Since E(Ax+b) = AE(x)+b we have (Ax+b)′ = Ax′. Thus Var(Ax+b) =
E((Ax′)(Ax′)T ) = E(Ax′x′T AT ) = A E(x′x′T ) AT = A Var(x)AT . 2

Lemma 0.6 Suppose A ∈ Rp×d is a fixed p × d matrix, and b ∈ Rp is a fixed
vector. If x ∈ Rd and y ∈ Rp are uncorrelated random vectors, then Ax + b and
y are also uncorrelated random vectors.

Proof: Compute cov(Ax + b,y) = E(Ax′y′T ) = A E(x′y′T ) = A cov(x,y) = 0. 2

Combining Lemmas 0.4 and 0.5 gives us the desired computing tool:

Corollary 0.7 , If x ∈ Rd and y ∈ Rp are uncorrelated random vectors, then

Var(y + Ax + b) = Var(y) + A Var(x)AT

for any fixed matrix A ∈ Rp×d and any fixed vector b ∈ Rp. 2
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0.1.2 Matrix calculus

Suppose X ∈ Rm×n is a matrix. Then X may be regarded as a list of mn variables
x11, . . . , xij , . . . , xmn.

If X 7→ F (X) ∈ R defines a scalar-valued function of the matrix variable X,
then its gradient with respect to X may be written as

∇XF =


∂F

∂x11
· · · ∂F

∂x1n

...
. . .

...
∂F

∂xm1
· · · ∂F

∂xmn

 ,

where, for future notational convenience, the partial derivatives are arranged in a
matrix of the same dimensions as X.

For the scalar-valued function F (X) = tr (AXB) with fixed matrices A = (aij)
and B = (bij) of appropriate dimensions, we have

F (X) =
∑
r,s,t

ars xst btr ⇒ ∂F

∂xij
=

∑
r

ari bjr.

This is the i, j entry in AT BT , giving

∇Xtr (AXB) = AT BT . (2)

Since tr (M) = tr (MT ) for all square matrices M , we also have

∇Xtr (AXT B) = BA. (3)

For the scalar-valued function F (X) = tr (XAXT ) with fixed square matrix
A = (aij) of appropriate dimensions, we have

F (X) =
∑
r,s,t

xrs ast xrt ⇒ ∂F

∂xij
=

∑
t

ajt xit +
∑

s

xisasj .

This is the i, j entry in XAT + XA, giving

∇Xtr (XAXT ) = XAT + XA. (4)

Likewise,
∇Xtr (XT AX) = AT X + AX. (5)

In particular, if A = AT is symmetric, we get

∇Xtr (XAXT ) = 2XA; ∇Xtr (XT AX) = 2AX.

Specializing still further to A = Id, for every X we have

∇Xtr (XXT ) = ∇Xtr (XT X) = 2X. (6)
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0.1.3 Estimating linear systems

The Kalman gain estimation method may be generalized to apply to random vectors
that change by an affine process. Namely, suppose that x0 ∈ Rd is a random vector
with known variance matrix P0 = Var(x0), and define a sequence of random vectors
{x1,x2, . . .} ⊂ Rd by the recurrence

xn = Anxn−1 + bn + qn, n = 1, 2, . . . ,

where {Ai : i = 1, 2, . . .} ⊂ Rd×d and {bi : i = 1, 2, . . .} ⊂ Rd are fixed sequences
and {qi : i = 1, 2, . . .} ⊂ Rd is a sequence of mutually uncorrelated random vari-
ables with mean zero and variances Var(qi) = Qi, that are also uncorrelated with
x0. Then by Lemma 0.7,

Pn
def= Var(xn) = AnPn−1A

T
n + Qn

gives the variance of xn. Such a variance reflects great ignorance about xn since
no measurements are made. We expect Pn to be large in some sense, and to grow
as n →∞.

Now suppose that p measurements are made of linear combinations of the d
coordinates of xn:

yn = Hnxn + rn,

where Hn ∈ Rp×d is a fixed matrix whose rows give the coefficients of the linear
combinations, and the measurement error rn ∈ Rp has variance Rn and is one of
a sequence {ri : i = 1, 2, . . .} ⊂ Rp of mutually uncorrelated mean-zero random
variables that are also uncorrelated with {xi : i = 0, 1, . . .} and {qi : i = 1, 2, . . .}.
Our goal is to construct an updated estimator x̂n for the latest state xn, using the
measurement yn and the previous estimator x̂n−1, such that P̂n

def= Var(xn− x̂n),
the latest estimator’s variance from the latest state, is minimal in some sense, and
in particular is smaller than Pn.

The estimator x̂n will be constructed recursively in a manner analogous to
updating a running average. Namely, we will define a Kalman gain Kn such that

x̂n = Anx̂n−1+bn + Kn [yn − ŷn] ,

where ŷn
def= Hn (Anx̂n−1 + bn) is the expected measurement, given the previous

estimate. The difference yn − ŷn is the innovation. Hence the new estimator is
a prediction, namely Anx̂n−1+bn, from the prior estimate x̂n−1, updated by a
weighted correction based on the deviation from the predicted.measurement. The
variance P̂n from the true state will also satisfy a recurrence in terms of P̂n−1 that
can be adjusted, by an optimal choice of Kn, to minimize P̂n at each n.

The Kalman estimate x̂ is computed in several steps:

• Predicted (a priori) state vector from the previous state estimate:

x̂n|n−1
def= Anx̂n−1 + bn
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• Predicted (a priori) measurement:

ŷn|n−1
def= Hnx̂n|n−1

• Innovation:
ŷn

def= yn − ŷn|n−1

• Updated (a posteriori) state vector estimate:

x̂n
def= x̂n|n−1 + Knŷn

We will choose Kn to minimize tr P̂n, defined below.

• Predicted (a priori) state estimate variance from the previous state estimate
variance:

P̂n|n−1
def= Var(xn − x̂n|n−1) = Var(An(xn−1 − x̂n−1) + qn)

= An Var(xn−1 − x̂n−1) AT
n + Var(qn) = AnP̂n−1A

T
n + Qn.

• Innovation variance:

Sn
def= Var(ŷn) = Var(Hn(xn − x̂n|n−1) + rn)

= Hn Var(xn − x̂n|n−1) HT
n + Var(rn) = HnP̂n|n−1H

T
n + Rn.

Update the (a posteriori) state estimate variance:

P̂n = Var(xn − x̂n) = Var(xn − [x̂n|n−1 + Knŷn])
= Var(xn − [x̂n|n−1 + Kn(yn −Hnx̂n|n−1)])
= Var(xn − [x̂n|n−1 + Kn([Hnxn + rn]−Hnx̂n|n−1)])
= Var([I −KnHn](xn − x̂n|n−1)−Knrn)

= (I −KnHn) P̂n|n−1 (I −KnHn)T + Kn Rn KT
n ,

since rn and xn − x̂n|n−1 are uncorrelated. To derive the full recurrence formula
P̂n−1 → P̂n takes one more substitution:

P̂n = (I −KnHn)[AnP̂n−1A
T
n + Qn](I −KnHn)T + Kn Rn KT

n .

Now minimize P̂n by setting ∇K(tr P̂n) = 0. It is enough to use the recurrence
formula P̂n|n−1 → P̂n since P̂n|n−1 has no Kn dependence. Begin by expanding:

P̂n = P̂n|n−1 −KnHnP̂n|n−1 − P̂n|n−1H
T
n KT

n + Kn[HnP̂n|n−1H
T
n + Rn]KT

n

= P̂n|n−1 −KnHnP̂n|n−1 − P̂n|n−1H
T
n KT

n + KnSnKT
n .
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All of the K dependence is explicit in this formula, so we may compute the gradient
with respect to K by matrix calculus. To find the optimal Kalman gain Kn, set
the K-gradient of the trace of P̂n to zero:

0 = ∇Ktr P̂n = ∇Ktr (P̂n|n−1)−∇Ktr (KnHnP̂n|n−1)

−∇Ktr (P̂n|n−1H
T
n KT

n ) +∇Ktr (KnSnKT
n )

= 0− (HnP̂n|n−1)T − P̂n|n−1H
T
n + KnST

n + KnSn

= −2(HnP̂n|n−1)T + 2KnSn,

since ST
n = Sn and P̂T

n|n−1 = P̂n|n−1. Conclude that the optimal Kalman gain is

Kn = P̂n|n−1H
T
n S−1

n . (7)

For this optimal gain, the a posteriori state estimate variance recurrence simplifies:

P̂n = P̂n|n−1 −KnHnP̂n|n−1 − P̂n|n−1H
T
n KT

n + KnSnKT
n

= (I −KnHn)P̂n|n−1 − P̂n|n−1H
T
n KT

n + (P̂n|n−1H
T
n S−1

n )SnKT
n

= (I −KnHn)P̂n|n−1.

Summarizing, we start with an unknown prior state vector xn−1 that we esti-
mate by x̂n−1 with variance P̂n−1. This evolves to an unknown current state vector
xn = Anxn−1 + bn + qn. We make one measurement of vector yn = Hnxn + rn

and then update the estimate and its variance as follows:

• Predicted current state estimate variance: P̂n|n−1 = AnP̂n−1A
T
n + Qn;

• Innovation variance Sn = HnP̂n|n−1H
T
n + Rn;

• Optimal Kalman gain Kn = P̂n|n−1H
T
n S−1

n ;

• Predicted state vector estimate x̂n|n−1 = Anx̂n−1 + bn;

• Predicted measurement ŷn|n−1 = Hnx̂n|n−1;

• Updated state vector estimate x̂n = x̂n|n−1 + Kn(yn − ŷn|n−1).

• Updated state estimate variance P̂n = (I −KnHn)P̂n|n−1.

By assumption, the initial state vector x0 and all the noise vectors qk and rk are
mutually uncorrelated random vectors with known means and variances. The state
estimate and its variance may be initialized by

x̂0
def= E(x0); P̂0

def= Var(x0),

while the noise vectors all have mean zero and variances Qk and Rk, respectively.
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0.2 Exercises

1. For fixed h > 0 and n = 0, 1, 2, . . ., let tn = t0 + nh be a grid of time steps.
Write xn = (xn, x′n, x′′n) for the vector describing the position, velocity, and
acceleration, respectively, of a particle at time tn = t0 + nh. Assuming that
the particle’s trajectory is smooth, use Taylor’s theorem to write a recurrence
for xn in terms of xn−1, treating any unknown terms as errors.

2. For fixed h > 0 and n = 0, 1, 2, . . ., let tn = t0 + nh be a grid of time steps.
Write xn = (xn, x′n, x′′n) for the vector describing the position, velocity, and
acceleration, respectively, of a particle at time tn = t0+nh. Assuming that the
position and velocity of the particle can be measured with errors rn = (rn, r′n)
at each time step, write the linear equation for measurement yn that should
be used in Kalman filtering for xn.

3. Implement the Kalman filtering algorithm for the system described in the
problems above. Assume that x0 = (0, 0, 0) with P0 = Var(x0) = Id, and for
every n = 1, 2, 3, . . ., put

Qn = Var(qn) =

 h6/36 0 0
0 h4/4 0
0 0 h2

 ; Rn = Var(rn) =
(

σ2 0
0 τ2

)
,

with values of h, σ, τ to be specified at run time.

0.3 Solutions to the Exercises

1. For fixed h > 0 and n = 0, 1, 2, . . ., let tn = t0 + nh be a grid of time steps.
Write xn = (xn, x′n, x′′n) for the vector describing the position, velocity, and
acceleration, respectively, of a particle at time tn = t0 + nh. Assuming that
the particle’s trajectory is smooth, use Taylor’s theorem to write a recurrence
for xn in terms of xn−1, treating any unknown terms as errors.

Solution: By Taylor’s theorem,

x(t + h) = x(t) + h x′(t) +
h2

2
x′′(t) + q(t, h),

x′(t + h) = x′(t) + h x′′(t) + q′(t, h),
x′′(t + h) = x′′(t) + q′′(t, h),

with errors q(t, h) = x′′′(c)h3/6, q′(t, h) = x′′′(c′)h2/2, and q′′(t, h) = x′′′(c′′)h
that depend on the values of x′′′ at unknown points c, c′, c′′ ∈ [t, t+h]. Putting
t = tn−1 so that t + h = tn, we may write

xn =

 1 h h2/2
0 1 h
0 0 1


 xn−1

x′n−1

x′′n−1

 +

 qn

q′n

q′′n

 def= Axn−1 + qn,
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where qn = q(tn, h) = (qn, q′n, q′′n) is the vector of process errors. 2

2. For fixed h > 0 and n = 0, 1, 2, . . ., let tn = t0 + nh be a grid of time steps.
Write xn = (xn, x′n, x′′n) for the vector describing the position, velocity, and
acceleration, respectively, of a particle at time tn = t0+nh. Assuming that the
position and velocity of the particle can be measured with errors rn = (rn, r′n)
at each time step, write the linear equation for measurement yn that should
be used in Kalman filtering for xn.

Solution: Putting yn = (yn, y′n) for the vector of position and velocity
measurements, we may write

yn =
(

1 0 0
0 1 0

)  xn

x′n

x′′n

 +
(

rn

r′n

)
def= Hxn + rn,

where rn = r(tn) = (rn, r′n) is the vector of measurement errors. 2

3. Implement the Kalman filtering algorithm for the system described in the
problems above. Assume that x0 = (0, 0, 0) with P0 = Var(x0) = Id, and for
every n = 1, 2, 3, . . ., put

Qn = Var(qn) =

 h6/36 0 0
0 h4/4 0
0 0 h2

 ; Rn = Var(rn) =
(

σ2 0
0 τ2

)
,

with values of h, σ, τ to be specified at run time.

Solution: Modify the codes kalmanf.m and taylor3.m on the class web
site. 2


