Chapter 1

Numbers and Arithmetic

Processing, display, and communication of digital information, that is, information
encoded as numbers, is accomplished by various kinds of arithmetic with various
kinds of numbers. Algorithms to do this are sequences of operations such as reading
and writing digits, addition and multiplication, comparisons and logical decisions.
Only finite algorithms can be used: these are procedures in which

e Every operation can be performed in a finite time;

e The algorithm is guaranteed to stop, with an answer, after a finite number of
operations.

For an algorithm to be finite, its arithmetic operations can only be carried out
to finite precision, namely on finitely many digits. In reality, a computer can keep
only a small number of digits for each number because memory, processing and
data communication are costly resources. This usually poses no problems since the
digital information of multimedia signals is itself of low precision. For example, a
“CD-quality” digital sound recording consists of a sequence of numbers measuring
the electrical output of a microphone at sequential times, with a precision of five
decimal digits or less per measurement. Images from typical scanners are even less
precise, consisting of arrays of numbers measuring light intensity to three decimal
digits. Physical measurements always have some imprecision or measurement error
which is costly to reduce, and human senses cannot make use of much precision
anyway. The result is that computation for multimedia signal processing can be
done with low precision arithmetic.

Most computers distinguish between integers and floating-point numbers or
floats, which are approximations to real numbers. Either class is suitable for rep-
resenting finite-precision information. Floats have the advantage of using all the
precision available with given memory space, independent of their magnitude. In-
tegers are superior for certain exact calculations such as counting.

All computers have a fixed range of representable values for both integers and
floats, and have efficient circuitry for arithmetic with numbers in those ranges. For

1

2 Chapter 1. Numbers and Arithmetic

example, most computers can perform floating-point arithmetic very efficiently at
some built-in fixed precision such as seven or 14 decimal digits. More precision is
obtained when needed using software algorithms that are consequently less efficient.

This chapter will examine some of the mathematical properties of integer and
floating-point arithmetic, develop a few facts about integer arithmetic that are
useful for secret codes, define precision and analyze the propagation of error caused
by low-precision floating-point computation, and describe a standard computer
representation of floats with an explanation of how it aids efficient computation
with good control of error propagation.

1.1 Integers
The set of integers is denoted by Z def {-..,=2,-1,0,1,2,3,...}. The use of the

letter ‘Z’ derives from the German noun “Zahl,” or “number.” Z is a disjoint union

of three subsets: the positive integers Z+ def {reZ:xz>0}=1{1,23,...}, the

negative integers Z~ e 7+ = {xreZ:z<0}={-1,-2,-3,...}, and zero:
Z =7 U{0}UZ". The natural numbers N 7+ {0} ={x€Z:2>0}=
{0,1,2,...} are another disjoint union from these pieces.

Although Z, Z*, Z~ and N are all infinite sets, any individual integer is de-
termined by a finite list of symbols. The choice of symbols is largely a matter of
convenience. Humans use arabic numerals that can be manipulated easily on paper
and by calculator. Computers use sequences of low and high voltages, nominally
Os and 1s, that can be processed electronically at nearly the speed of light.

Division and greatest common divisors

For any integers a,b with b # 0, there are unique integers ¢ and r, called the
quotient and remainder, respectively, satisfying the division properties:

1. a=qgb+r;
2. 0<r<|bl.

If a,b € N, then ¢q,r € N as well. Quotient g is given by integer division q = L%J,
where the floor function |z| computes “the greatest integer less than or equal to
x.” Remainder r is the leftover: r = a — gb.

The “long division” algorithm can be used to determine ¢ and r from a and b.
Integer division takes finitely many steps: if a and b have at most N digits, then
computing ¢ and 7 requires O(N?) one-digit operations! such as trial multiplications
or subtractions.

The Standard C programming language has special integer quotient and remain-
der operators / and % for computing ¢ and r, as seen in this fragment of a computer
program:

1See Appendix B.3, page 292, for an explanation of this “big-Oh” notation.

1.1. Integers 3

int a, b, q, r;

a/b;
a%b;

q
r

Standard C guarantees that conditions 1 and 2 hold for ¢ > 0 and b > 0, but,
unfortunately, condition 2 is not guaranteed if a or b is negative. For example, one
typical machine computes as follows:

a b g=a/b r=ajb

17 5 3 2

17 -5 -3 2
-17 5 -3 -2
-17 -5 3 -2

If b # 0 and the remainder upon dividing a by b is zero, then we say? “b divides
a” and write bla. Some facts written with this notation are:

e b|0: any b divides a = 0 (take ¢ =0 and r =01in a = gb + r);
e 1lla: b =1 divides any a (take g =b and r =0in a = gb + r);

e bla = =b|ta: if bdivides a then +b divides +a (if a = ¢gb, then —a = (—q)b,
—a = q(=b), and a = (—q)(=D)).

Lemma 1.1 Ifa > 0 and b divides a, then 0 < |b| < a.

Proof: From bla we have a = ¢b, so 0 < a = |a| = |¢b| = |g||b|, so |¢q| # 0, so
lg| > 1. Thus a — |b] = (|q| — 1)|b] > 0, so a > |b|. Finally, b # 0 since ¢b = a # 0,
so |b] > 0. m

A positive integer c is said to be the greatest common divisor of two integers a

and b if
ged-1: ¢ divides both a and b: c|a and cl|b;
ged-2: Any integer that divides both a and b also divides ¢: (d|a and
d|b) = dlc.

If it exists, it must be unique by property gcd-2 and Lemma 1.1. The proof is that
if ¢; and c¢o are both greatest common divisors of a and b, then ¢1]ca so ¢1 < ¢,
and also ca|cy s0 ¢3 < ¢1. Thus ¢2 = ¢;. But existence is guaranteed, too:

Theorem 1.2 FEvery pair of integers a,b, not both zero, has a greatest common
divisor, which can be written as xa + yb for some integers x,y.

)

20r else we say “b is a divisor of a,” or “a is divisible by b.”

4 Chapter 1. Numbers and Arithmetic

Proof: Let D ={xza+yb: z,y € Z}. D contains some nonzero integers since not
both a and b are zero, so D must contain some positive integers since d € D =
—d € D. Let ¢ = xpa + yob be the smallest positive integer® in D. Then any
integer z that divides both a and b will divide ¢, since a = nz and b = mz implies
¢ = (zon + yom)z. Hence c satisfies property ged-2.

To show that ¢ divides a, write a = gc + r with 0 < r < ¢. Then a = g(zga +
yob) + 1, s0 r = (1 — qzo)a + (—qyo)b € D. This r must be zero since otherwise it
would be a smaller positive element of D than c¢. Hence cla. The same argument
shows that ¢ divides b, so ¢ satisfies property ged-1. |

We may use the functional notation ¢ = ged(a, b) for this unique greatest com-
mon divisor. For example, ged(—12,16) = 4 and ged(256 964 964, 6 447 287) = 73.
Note that ged(0,0) is undefined since every integer, no matter how large, divides
both zeroes. Hence, the “not both zero” assumption is necessary.

By convention, ged(a,0) = ged(0,a) = |a| for any a # 0. Other useful facts are:

e ged(a,b) = ged(b, a) = ged(|al, |b]).

e If o’ = max(|al,|b]) and & = min(|a|, |b|), then ged(a,b) = ged(a’,d’).
e If a # 0 and b # 0, then ged(a,b) < min(|al, |b]).

o If a divides b, then ged(a,b) = |al.

An efficient algorithm for computing greatest common divisors has been known
at least since Euclid wrote it down thousands of years ago, having first observed:

Corollary 1.3 If a and b are integers with b # 0, then ged(a,b) = ged(b, a%b).

Proof: Any common divisor ¢ of a and b is also a common divisor of b and r = a%b,
since a = nc and b = mc with a = ¢b + r implies r = a — ¢b = (n — gm)c. Taking
the largest ¢ shows that ged(a, b) < ged(b, a%D).

Conversely, by Theorem 1.2 there are integers x,y such that ged(b, a%b) =
xb + y(a%b) = xb + y(a — gb) = ya + (x — qy)b. Thus ged(b, a%b) is a positive
element of the set D defined in the proof of that theorem. It is no smaller than the
least positive element of D, which is ged(a, b), so ged(a,b) < ged(b, a%b).

Combining the two inequalities gives ged(a, b) = ged (b, a%b). o
Applying this corollary repeatedly gives ged(a,b) = -+ = ged(c,0) = |¢|, which
may be implemented by a recursive function, namely one that calls itself. To start
it off, first prepare the inputs by replacing a < max(|a|, |b|) and b + min(|al, |b]),
so as to guarantee that a > 0, b >0, and a > b:

Euclid’s Algorithm
gcd(a, b):

[0] If b==0 then return a
[1] Else return gcd(b, a%b)

3We take for granted the Least FElement Principle: any subset of ZT has a smallest element.

1.1. Integers 5

Notice that gcd() first tests a termination condition, which in this case is a
comparison of b with zero. If that condition is satisfied then the algorithm ends
with an answer. Otherwise, it calls itself* with new arguments that are closer to
satisfying the termination condition.

To analyze this algorithm, let a,,b, be the respective values of a,b at the n'®
call to gcd(). Then ay = a, by = b, apy1 = b, and b1 = a,%b, forn =1,2,...
The remainder property b > a%b insures that b = by > by > b3 > - -+ > 0, and since
each b,, is an integer, the recursion must terminate after at most b calls. But each
function call requires copying the digits of numbers no bigger than a, the division
algorithm, and reading the digits of a number to see if they are all 0. Hence, each
step takes finitely many calculations, so the algorithm is finite.

Suppose k > 1 is the least index for which b, = 0, the termination condition.
Then the returned value ay is the greatest common divisor of a; and by = 0. This
return value passes up through all the recursively-called gcd () functions including
the first. By Corollary 1.3, it is the greatest common divisor of the original pair
a, b, so Euclid’s algorithm returns the correct answer.

The preceding finiteness analysis shows that gcd(a,b) terminates after O(b)
recursive function calls, but in fact there is a far better efficiency estimate for
large b. Since b,11 < b, for all n = 1,2,..., we may write b,11 = b, — d,, for
some 0 < d, < b,. But also, a,41 = by, so for any 1 < n < k—2, byyo =
An11%bn+1 = b, %(by, — dy,), which implies two things: b0 < byi1 = by, — d,, and
also bpya = b, % (b, — dn) < dy. Thus byyo < min{b, — d,,d,} < %bn, so by, is
halved every two function calls. Thus the number of recursions required by Euclid’s
algorithm is at most 2log, b = log, 5 b, which is proportional to the number of digits
in b rather than the much larger value of b itself.

*A better complexity estimate for ged

A somewhat better speed estimate follows from a worst-case analysis done almost
two centuries ago using the Fibonacci numbers, a sequence of integers defined re-
cursively by

F():O; F1 :1; Fn+2 :Fn+1 +Fn, n:0,1,2,... (11)

For example F2 = 1, F3 = 27 F4 = 3, F5 = 5, and Fg = 34.
Suppose a > b > 0 with not both ¢ = 0 and b = 0. Before bringing in the
Fibonacci numbers we may dispose of two trivial cases:

e If a > b =0, then ged(a,0) = a and Euclid’s algorithm terminates after one
function call.

e If a =b >0, then a%b = 0 so ged(a, b) = ged (b, 0) = b and Euclid’s algorithm
terminates after two function calls.

This leaves the main case a > b > 0:

4Recursively!

6 Chapter 1. Numbers and Arithmetic

Theorem 1.4 (Gabriel Lamé, 1844) Suppose a > b > 0 and Fuclid’s algorithm
terminates after k function calls. Then a > Fj41 and b > Fy, where Fy is the Eth
Fibonacci number.

Proof: Use induction on k. Case k = 1 requires b = 0 and is inapplicable; it is
the first trivial case handled previously. Case k = 2 must have a%b = 0 so that
the first recursive call to gcd() ends immediately with the termination condition.
The smallest pair @ > b > 0 for which this happens is a = 2 = F3 = Fj41 and
b=1=F, = F.

Now suppose that the result is true for k£ and let @ > b > 0 be a pair that
requires exactly k + 1 function calls. Then the first recursive function call gets the
arguments b, a%b, which will require exactly k more recursive calls, so b > Fyy1
and a%b > Fy. But then the integer division properties imply

a = (a/b)b + (a%b) > (a/b)FkJ,_l + Fy > Fypp+ Fy = Frgo,

since a/b > 1. Hence the inductive hypothesis holds for k + 1. O

To complete the estimate we use the formula for the n'® Fibonacci number:

def 1 —+/5

n—" 1)
b def +\[z1.618, po T 0618,

\/S 9 P+

The two numbers ¢ are the distinct roots of the quadratic characteristic equation

r? = r 4+ 1 associated to the recursion in Equation 1.1. The power ¢t dominates

the magnitude of F,, since |¢™| <1 for all n € N, so

F, =

> Pl

V5
which means that ged(a,b) with @ > b > 0 will require k& function calls only if
b > (¢% —1)/v5. Taking logarithms and ignoring constant terms shows that
computing ged(a,b) will take about log,, b ~ log; 615 b function calls. This is a

somewhat better estimate than log ;b ~ log; 414 . However, both estimates are
O(logb) and differ only slightly in the constants of proportionality.

Fy,

Primes and unique factorization

Integers a and b are called relatively prime if ged(a,b) = 1. Any integer a is
relatively prime to b = 1.

Lemma 1.5 If ¢ divides ab and ged(a,c) =1, then ¢ divides b.

Proof: Write 1 = ged(a,c¢) = moa 4+ noc as in the proof of Theorem 1.2. Then
b = mgab+ngch. Since ¢ evidently divides ngcb, and ¢ divides mgab by assumption,
it follows that ¢ divides mgab + ngeb = b. O

An integer p > 1 is called prime if its only divisors are +1 and £p. Thus, if a is
any integer and p is prime, either p divides a or else a and p are relatively prime.

1.1. Integers 7

It follows from Lemma 1.5 that if p is prime and p divides ab, then either p divides
a or p divides b.

It is an easy exercise to prove from these definitions that distinct primes are
relatively prime.

Suppose that N > 1 is a fixed integer. Then either IV is prime or there is some
1 < a < N that divides N. The same argument may be repeated for N; = a and
Ny = N/a, both of which are positive integers strictly less than N = Ny N,. This
recursive decomposition terminates after finitely many steps at the prime divisors

P1,P2,---, Dk of N.
The smallest primes are 2, 3, 5, 7, 11, 13, and 17, but the list never ends:

Theorem 1.6 There are infinitely many primes.

Proof: Let p1,p2,...,p, be any finite set of primes. Then N def + pip2 - pp is
relatively prime to all of them. But either IV is prime and not in the set, or else N
contains a prime divisor not in the set. Hence no finite set of primes can contain
all primes. Conclude that the set of primes is infinite. o

To determine whether an integer IV is prime may be done by trial division with
all integers less than or equal to v/N. This is very slow for large N and there are
more sophisticated primality tests which are faster.

The prime divisors of an integer N > 1 yield its prime factorization® N =
pip2 - Pk-

Theorem 1.7 Prime factorization is unique: If p1--pn = q1- - ¢m and the p’s
and q’s are primes, then n = m and, possibly after re-indexing, the p’s are the same
as the q’s.

Proof: Let r be one of the primes {q1,qa2, ..., ¢n}- Since r divides p; - - - py,, it must
divide one of the p’s. But then r must equal one of the p’s since two primes are
either equal or relatively prime. Thus the set of p’s includes all the ¢’s. Similarly,
the set of ¢’s includes all the p’s. If a prime r appears i times in one factorization
and j > 7 times in the other, then dividing both by 7% leaves equal factorizations
with j —¢ > 0 factors r in one but no factor r in the other, which is not possible.
Thus the count of each prime must be the same in both factorizations. O

Unique factorization requires that 1 not be considered prime. Computing the
prime factorization of a large integer cannot be done fast by any known method,
and this tough problem can be used for cryptography.

1.1.1 Modular arithmetic

Fix an integer M > 1 and say that two integers a and b are congruent modulo M
if M divides b — a, that is, if a and b differ by a multiple of M. Such a condition is
written a = b (mod M).

5Some prime divisors may appear more than once.

8 Chapter 1. Numbers and Arithmetic

Congruent numbers must leave the same remainders a%M and b% M, so the
finite set {n : 0 < n < M} = {0,1,...,M — 1}, which may also be called M,
contains one representative from each of the congruence classes modulo M. Namely,
every integer is congruent to one of the numbers 0,1,..., or M — 1, modulo M.

Modular addition, subtraction, and multiplication is similar to ordinary arith-
metic except that equality is replaced by congruence. Thus the answer need only
be determined within an integer multiple of the modulus M, and the operands can
be replaced by congruent representatives from the set M:

Lemma 1.8 If a,b,c € Z are respectively congruent to o, 3,y € M modulo M,
then
ab+c=af+v (mod M).

Proof: Write a = a+axM, b= 0+ yM, and c = v+ zM, where z, y, and z are
integers. Then ab+c = af+v+ (ay+ Bz +2)M, so ab+ c— (af +7) is an integer
multiple of the modulus M. a

The modular additive inverse of x is any number y such that x +y = 0
(mod M). For x € M, a natural candidate is y = M — z, which also belongs®
to the set M. Thus we can mimic ordinary signed integers in modular arithmetic
by considering numbers between 0 and M /2 to be positive, and those between M /2
and M to be negative. Modular addition and subtraction will then agree with
ordinary addition and subtraction for all operations with integers of sufficiently
small magnitude. If |x| < M/4 and |y| < M/4, then x + y will have the same
representative in Z as in the signed interpretation of the set M.

Modular multiplication likewise agrees with ordinary integer multiplication of
small enough integers. Where M /4 was a magnitude limit for addition, it is /M /2
for multiplication.

Modular division b/a can sometimes be done even if a does not divide b. For
example, 5-2 = 1 (mod 9), so we can write 1/2 = 5 (mod 9) or 1/5 = 2
(mod 9). Define a quasi-inverse of a modulo M to be any integer o’ satisfying

aa’ =1 (mod M). (1.2)

This is a multiplicative inverse in modular arithmetic, but it has no analog in
ordinary integer arithmetic.

Lemma 1.9 Let M > 1 and a be integers. Then a has quasi-inverse a’ modulo M
if and only if ged(a, M) = 1, and in that case a’ is unique in the set {1,..., M —1}.

Proof: 1f ged(a, M) = 1, then write 1 = ged(a, M) = moa + nogM as in the proof
of Theorem 1.2. Evidently mg is a quasi-inverse of a, and if mg > M or mg < 0,
an appropriate multiple of M can be added to get a quasi-inverse a’ = mg + kM €
{0,1,2,..., M — 1}. But this a’ cannot be zero since a-0=0%1 (mod M). For
uniqueness, note that if both o’ and a” satisfy aa’ = aa” =1 (mod M), then M

6What about = = 0?

1.1. Integers 9

divides a(a’ — a”). By Lemma 1.5, M must divide o’ — a”, so if both o’ and o’ lie
in the set {1,..., M — 1} they must be equal.

On the other hand, if ged(a, M) = moa + noM = d > 1, then there are no
integers x,y such that 0 < ax + My < d. In particular, there are none that give
ax =1+ yM, so there is no integer x solving ax =1 (mod M). m]

Corollary 1.10 If M is prime, then every integer a in the set {1,..., M — 1} has
a quasi-inverse modulo M. O

The following extension of Euclid’s algorithm, from Knuth’s Fundamental Al-
gorithms, page 14, finds quasi-inverses. Given two positive integers a and b, it
computes d = ged(a,b) and two integers x, y satisfying ax + by = d:

Extended Euclid’s Algorithm

gcdx(a, b):

[0] Initialize x=0, y=1, xo=1, yo=0, c=a, and d=b

[1] Let q = ¢/d and r = cld

[2] If r==0, then go to [5]

[3] Let ¢ =d, d =1, t = x0, X0 = X, X = t-q*x,
t = yo, yo =y, and y = t-g*xy

[4] Go to [1]

[5] Print x, y, and d

Starting with relatively prime a and b = M, the output will be a quasi-inverse
x of a, some integer y, and the known result d = ged(a, M) = 1. After storing
k = |z/M]|, we may adjust < x — kM to get a quasi-inverse in {1,..., M — 1}.
Note that this requires adjusting y <— y 4+ ka to preserve the equality axz + by = d.

Modular exponentiation and Euler’s totient

For each integer M > 0, the set {k € N : ged(k, M) = 1} is preserved under
multiplication and quasi-inversion modulo M: ged(k1, M) = 1 and ged(ke, M) =1
implies ged(k1k2, M) = 1 by Lemma 1.5 applied to any common prime divisor p
of M and kiks, and ged(k, M) = 1 implies k has a quasi-inverse k' which implies
k' has a quasi-inverse k which implies ged(k’, M) = 1 by Lemma 1.9. Evidently
ged(1, M) = 1, and thus the finite set of remainders

Gy Y (k%M : ke N, ged(k, M) =1} c {1,...,M — 1}

contains 1 and is preserved under multiplication and quasi-inversion modulo M.
Such a set is called a group. The number of elements in a group is called its order.

Definition 1 Euler’s totient function ¢(M) is the order of G yr, namely the number
of integers in {1,..., M — 1} which are relatively prime to M and are therefore
quasi-invertible modulo M.

10 Chapter 1. Numbers and Arithmetic

Subsets of Gj; that contain 1 and are also preserved under multiplication and
quasi-inversion modulo M are called subgroups. For example, the cyclic subgroup
generated by a € G consists of the remainders {a*%M : k € N}. This subset
evidently contains 1 = a® and is closed under multiplication: a”?a? = aP*9. The
order of the cyclic subgroup of G; generated by a is also called the order of a and
is denoted w(a).

Lemma 1.11 The order of a in Gy is the smallest positive integer k such that
a*=1 (mod M).

Proof: Let k be the smallest positive integer such that a* = (mod M). Then
for any 0 < p < ¢ < k we must have a? #Z a? (mod M) for otherwise a? P = 1
(mod M) with 0 < ¢ —p < k. Hence the k remainders a%M, a’%M, ..., a*%M
are distinct, so k < w(a).

For the reverse inequality, note that p = ¢ + nk implies

a? = a9t = 090" = a9(a®)" = a?(1)" = a? (mod M),

so that a? = a? (mod M) if p=¢q (mod k). Hence there are at most k distinct
values in {a?%M : p € N}, so k > w(a). Combining inequalities shows that
k= w(a). O
Lemma 1.11 shows that the cyclic subgroup generated by a is closed under quasi-
inversion: for any p € N there is some n € N such that nk — p € N. But then o”
has quasi-inverse a™*~P since

aP a"" P = gk = (ak)n =1)"=1 (mod M).

Theorem 1.12 (Lagrange) 7 The order of a in Gy divides ¢(M).

Proof: Denote by H the cyclic subgroup of Gj; generated by a, and define the
coset
gH = {gh%M : h € H}

determined by each g € Gj;. Note first that for elements g1,92 € Gy, either

g1H = goH or g1H NgoH = (). The first occurs if gbgy € H, for then g1z € g1 H is

the same as goy € go H with y def ghgrx € H, using the fact that H is closed under

multiplication. The second occurs if ghgy ¢ H because if g1 H and g, H shared an
element z = g1z = goy (mod M), some z,y € H, it would mean

917 = goy (mod M) = ghg1 = yz' (mod M) = ghgy € H,

since H is closed under quasi-inversion. Hence no shared element can exist.
Next, note that each element g € G is in some coset, in fact in gH, simply
because 1 € H. Thus G = U gH, and this union is disjoint.
9ge€GMm

"Lagrange actually proved that the number of elements in a subgroup divides the number of
elements in the group, but only this special case is needed here.

1.1. Integers 11

Finally, note that every coset has the same number of elements w(a) as H, since
the mapping H — gH given by x — gz is a one-to-one correspondence with inverse
y — ¢'y. Combining these observations shows that a whole number multiple of
w(a) gives the order ¢p(M) of G- a

Euler’s totient satisfies a modular exponentiation identity:

Theorem 1.13 (Euler) If M and a are any integers with ged(a, M) = 1, then
a®M) =1 (mod M).

Proof: By Lemma 1.11 and Theorem 1.12, the smallest & > 0 such that a* =
(mod M) is w(a) and divides ¢(M), the number of elements in Gps. We may thus
write ¢(M) = nk for some n € N. But then

a®™M) = g™ = (aF)" = (1)" =1 (mod M),

proving the result. m|
The special case of prime M, for which ¢(M) = M — 1, gives:

Corollary 1.14 (Fermat) & If M is prime and 0 < a < M, then a™~! =1
(mod M). O

RSA encryption and decryption

Now suppose that e, d are quasi-inverses modulo ¢(M), so ed = 1+n¢(M) for some
n € N. Then a € Gy can be recovered from a® (mod M) as follows:

(a®)? = a®? = M) = () (0" =@ (mod M)

This idea underpins the Rivest-Shamir-Adleman (RSA) encryption and decription
algorithms. Given public information M and e it is easy to encrypt a message
represented by the cleartezt number a as the cyphertert number ¢ = a®%M. The
recipient can recover a = c¢?%M from the cyphertext using secret information d and
public information M. Both modular exponentiations can be performed efficiently
using the modular_power () function defined further on.

An eavesdropper wanting to recover cleartext a from intercepted cyphertext
¢ must know ¢(M) in order to compute the decryption exponent d, but this is
equivalent to factoring M into primes:

Theorem 1.15 Given the prime factorization M = pi™ ---p*, where {py : k =
1,...,n} are distinct primes and {my, : k =1,...,n} are positive integers, we have

¢(M) def #{k e M: ng(k,M) = 1} = H (p::nz 7p;n,i—1) ’

i=1

where the symbol || denotes the product of the terms that follow.

8This result is often called Fermat’s Little Theorem in contrast to his Great or Last Theorem,
proved only after a 350 year effort, that no positive integers x, y, z can solve " +y™ = z™ if n > 2.

12 Chapter 1. Numbers and Arithmetic

Proof: First note that ¢(p) = p — 1 for any prime number p. Similarly, compute
é(p™) = p™ — p™~1 for any individual prime p and any positive integer power m
since the only numbers in {0,1,2,...,p™ — 1} which are not relatively prime to p™
are the multiples of p: Op, 1p, ..., (p™ 1 —1)p = p™ —p, of which there are evidently
pmfl'

Next, note that if ged(M, N) = 1, then ¢(MN) = ¢(M)¢p(N). To prove this,
write ged(M, N) =1 = oM + yoN by Theorem 1.2 and observe that any integer
k can be written as k = kxoM + kyoN = M + yN for some z,y € Z. On the
other hand, the integers M N and k = M + yN are relatively prime if and only if
ged(z, N) =1 and ged(M,y) = 1. Hence {k € Z : ged(k, MN) = 1} is the set

{tM 4+ yN : z,y € Z; ged(z,N) = 1; ged(M,y) = 1}.

But aM +yN =2'M +y'N (mod MN) if and only if (z —2')M = (y —y)N +
kMN for some integer k, which is true if and only if N divides (z — z’) and M
divides (y' — y), so M +yN = 2’M + y' N (mod MN) if and only if x = 2’
(mod N) and y=y (mod M).

Thus each integer in {0,1,..., MN} that is relatively prime with M N is re-
alized as M + yN (mod MN) for exactly one of the ¢(N) representatives x €
{0,1,..., N} and exactly one of the ¢(M) representatives y € {0,1,..., M} that are
relatively prime to N and M, respectively. This implies that (M N) = ¢(M)p(N).

Finally, since powers of distinct primes are relatively prime, we can factor ¢ to
get the result from the single prime power computation: ¢([[, p;"") = [[, ¢(p;"") =
IL (" ="). =
Hence the security of RSA depends in part on the complexity of prime factorization.

RSA uses two large primes p,q and puts M = pq, so ¢(M) = (p —1)(¢ — 1)
by Theorem 1.15. Knowing M and ¢(M) in this case leads to p,q with a little
arithmetic, since

1+ M—¢M)=1+4pg—(p-1)(¢—1)=p+g,

and given pg and p+ ¢ it is easy to compute p—q = ++/(p + ¢)? — 4pq, from which
p and ¢ are individually computable.

Encryption exponent e is chosen® relatively prime to ¢(M) and published, but
its quasi-inverse d = ¢’ modulo ¢(M), computed with the extended Euler algorithm,
must be kept secret.

Decryption of a® by a = (a®)?%M assumes that ged(a, M) = 1, which is false
in the unlikely event that a, which is in some sense random, is divisible by p or q.
Further analysis, however, shows that decryption works for all « € {0,1,..., M —1}
in the M = pq case:

Theorem 1.16 (Chinese Remainder) Suppose pi,...,pn, are distinct primes

and N & p1-+ Pm. Then for each choice {ay,...,am} C Z, there is a unique
z€{0,1,...,N — 1} satisfying z =a; (mod p;) for alli=1,...,m.

9Tt should not be too small; one standard requires e > 65537 = 216 4+ 1. This lower bound,
incidentally, is a class of prime number called a Fermat prime.

1.1. Integers 13

Proof: For each i = 1,...,m, the numbers p; and N/p; are relatively prime.
Hence by Theorem 1.2 there are integers'® x;,y; satisfying z;p; + y;(N/p;) = 1.

Put b; def y;IN/p; and note that by this construction,

bi=1 (mod p;); b; =0 (modp;), j#i.

Now define z %' Z a;b; and observe by Lemma 1.8 that z = a; (mod p;) for all

i=1

i=1,...,m. Hence z is a solution.

For uniqueness, observe that if z and 2’ are two solutions, then z — 2z’ = 0
(mod p;) for all i = 1,...,m, so N divides z — z’. Hence there is exactly one
solution z in {0,1,..., N — 1}. O

Now suppose that M = pq for distinct primes p,q, and a € {0,1,..., M — 1} is
any integer. Then a is uniquely determined by its remainders a, %ef a%p and
aq o a%gq. Now either a, =0 (mod p), in which case a’; =0 (mod p) for every
k # 0, or else a), is relatively prime to p and has a quasi-inverse a; modulo p that
is also relatively prime to p, in which case

a;f"‘b(M) = a11)+n(p—1)(q—1) = a;+nq(p—1)—n(p—1) = (ap)! [ag—l}nq [(a;)p—l]n.

By Fermat’s Little Theorem the factors in square brackets are congruent to 1 so the
expression is congruent to a,. Conclude that agd =a, (mod p) for any value of a,
ifed=1 (mod ¢(M)). A similar argument shows that agd =a, (mod gq). But
then a® = @ (mod M) is uniquely determined in {0,1,..., M} by the Chinese
Remainder Theorem, so it will be recovered by the RSA decryption algorithm.

Miller-Rabin primality test

RSA cryptography requires two large primes kept as private data, so they must be
chosen in secret for each implementation. One way to do this is to choose a large
random integer N and then test it and its successors N +1, N +2,... until a prime
is found. Trial division is too slow in practice, but there is a faster method based
on Fermat’s Little Theorem and successive modular square roots:

Lemma 1.17 Ifp is a prime and 2> =1 (mod p), then x = £1 (mod p).
Proof: Factor (z —1)(x +1) =22 —1=0 (mod p) to conclude that p divides
(x —1)(x + 1). Since p is prime it divides either (x — 1) or (z + 1). O
Theorem 1.18 Suppose N is an odd prime and write N —1 = 2°d where d is odd.
Then for every integer a with 1 < a < N, either

a®=1 (mod N)

or
a? =1 (mod N), for some 0 <r<s-—1.

10These integers may be found by the extended Euclid algorithm.

14 Chapter 1. Numbers and Arithmetic
Proof: By Fermat’s Little Theorem, a¥~! =1 (mod N). Write
1=V 1'=a¥7=(@)? = (- ((a)??--)? (mod N).

Now use Lemma 1.17 to conclude that one of the square roots is —1 or else all of
them down to a? are +1. a

Note that s is easily determined by trial division of N by 2.

A test integer N will be exposed as nonprime if we find a witness a such that
a®#1 (mod N) and a®*?# —1 (mod N) for all r € {0,1,...,5 — 1}. However,
for each nonprime N there are some values of a, called strong liars, which behave
as if N were prime. It is known'! that if N < 341550071 728 321 then it is enough
to test a € {2,3,5,7,11,13,17}, for not all of these can be strong liars.

It is believed that for any N the set {2,3,...,[2(In N)?|} must contain a witness
so that checking this set settles the question of N’s primality, but that result follows
from the Riemann Hypothesis which no one currently knows how to prove.

1.1.2 Representing integers in binary computers

Computers have internal representations for numbers that in most cases are easily
translated to binary, or base-2, notation. Most humans, on the other hand, use
decimal or base-10 notation. Binary notation in this text will be indicated by a
string of binary digits, or bits, each taking the value 0 or 1, followed by “base 2” in
parentheses. A four-bit binary number will look like bsbab1bg (base 2); one specific
example is the number 9, which is 1001 (base 2). This is analogous to a four-digit
decimal number like dzdadidy (base 10), for example 1997 (base 10). The “base
10” is usually omitted.

The base can be any positive integer greater than one.'? A number can be
written in any base, and its value for use in arithmetic can be obtained by summing
the values represented by its digits:

1001 (base 2) = 1x2340x224+0x2" +1x2°

9 (base 10);
1x10°+9 x 10% + 9 x 10" +7 x 10°
= 1024 +512+256+ 128 + 64 +8 +4 + 1
= 2104929498 4 27 1 26 4 93 4 924 20
= 11111001101 (base 2).

1997 (base 10)

More generally, the n-digit number written as h,_1 ...h1ho (base B) has the value
hn—1 X B" ' +... 4+ h; x B' 4+ hg x B°. The digits hg, h1, ... must lie in the range
{0,1,...,B — 1}. The choice B = 16 gives the useful hexzadecimal system which
uses the digits {0,...,9, A, B,C,D,E,F}, where A=10, B=11,C =12, D = 13,

11See Jaeschke, G., On Strong Pseudoprimes to Several Bases. Mathematics of Computation
volume 61, pages 915-926, published in 1993.
12We will not consider tallies, like 3 = ||| or 7 = ||| ||, that give “base one” notation.

1.1. Integers 15

’ Hex \ Bin H Hex \ Bin H Hex \ Bin H Hex \ Bin ‘

0 0000 4 0100 8 1000 C 1100
1 0001 5 0101 9 1001 D | 1101
2 0010 6 0110 A | 1010 E 1110
3 0011 7 0111 B 1011 F 1111

Table 1.1: One hexadecimal digit corresponds to four binary digits, or bits.

E = 14, and F = 15. Hexadecimal and binary are related by Table 1.1. Each
hexadecimal digit corresponds to 4 bits, making it easy to find the corresponding
binary expression: 1997 (base 10) = 7C'D (base 16) = 011111001101 (base 2).

The binary digits {b; : ¢ = 0,1,...,n — 1} of an n-bit nonnegative integer
= bp_1---babiby (base 2) are printed by the following algorithm:

Print the Binary Digits of an Integer x > 0, LSB First

bits(x):

[0] Print x%2

[1] If x>0, then call bits(x/2)
[2] Return

Notice that bits(x) prints the least significant bit (LSB) first, which is always
by, then by, be, and so on, terminating with the most significant bit (MSB), the
leftmost “1” of x as it is usually written in binary. If = 0 this routine prints a
single 0. In particular, bits(x) may print fewer than n bits.

To obtain the most significant bit first, merely interchange the print and recur-
sive function call lines:

Print the Binary Digits of an Integer = > 0, MSB First

bits0(x):

[0] If x>0, then call bits0(x/2)
[1] Print xJ%2

[2] Return

Notice that this function always prints a single leading 0 followed by the most
significant bit, then the rest down to bit by. Thus bits(x) may print up to n + 1
bits or it may print fewer than n bits.

The function bits() may also be implemented nonrecursively:

Print the Binary Digits of an Integer = > 0, LSB First, Nonrecursively

bitsnr(x):

[0] Print x%2

[1] Let x = x/2

[2] If x>0, then go to [0]

Modular exponentials like a®%M are efficiently computed using the binary ex-

16 Chapter 1. Numbers and Arithmetic

n
pansion e = €,2" +---+ €12+ ey = Zek2k:
k=0

af = (a)eo « (a2)el U, (a2")e“ _ H(a2k)ek _ H (agk%

k=0 {kiep=1}

since the factors with e = 0 are all 1. The powers a2" are obtained recursively by
squaring:

2k71

azoza; a2k:(a 2, k=1,2,...

Likewise, the modular powers a?" %M are obtained by squaring and then finding
the remainder modulo M. The function bitsnr () may be modified to perform this
exponentiation:

Compute a* Modulo M Using the Binary Digits of e

modular_power(a, e, M):

[0] Let prod =1

[1] If e%2 == 1 then let prod = (a*prod) % M
[2] Let a = (axa) % M

[3] Let e = e/2

[4] If e>0, then go to [1]

[5] Print prod

There are log, e passes through the loop [1]1-[4], each of which costs a fixed
number of multiplications, so the total cost is O(log, €) rather than the O(e) needed
for the naive algorithm.

The digits in base B of a nonnegative integer x are printed by another general-
ization of bits(). Recall that, if z > 0 and B > 0 are integers, then z%B is the
remainder left after dividing « by B.

Print the Base-B Digits of an Integer = >0
digits(x, B):
[0] Print x%B

[1] If x>0, then call digits(x/B,B)
[2] Return

Like bits (), this function prints the least significant digit first. It has a nonrecur-
sive version as well as a recursive version that prints the most significant bit first.
Of course, if B > 10, then suitable letters could be printed to represent digit values
from 10 to B — 1.

This recursive function is easily modified to print the most significant digits

first. There is also a nonrecursive version analogous to bitsnr (). Both are left as
exercises.

1.1. Integers 17

1.1.3 Integer arithmetic

A binary computer that stores w bits per integer has a maximum unsigned integer
of 2 — 1. In general, a computer that stores integers as w base-B digits has a
maximum unsigned integer of BY — 1. However, the case B # 2 is rare enough to
be ignored hereafter. Some common values for w are 8, 16, 24, 32, 36, 64, 80, 96, or
128, typically with a selection of several being available. For example, a program
written in the Standard C language on one machine host can use integer variables
of type char (w = 8), short (w = 16), int (w = 32), or long (w = 64). These
parameters are stored in a file named limits.h on each machine:

Excerpt from limits.h

#define CHAR_BIT 8
#define SCHAR_MIN -128
#define SCHAR_MAX 127
#define UCHAR_MAX 255
#define SHRT_MIN -32768
#define SHRT_MAX 32767
#define USHRT_MAX 65535
#define INT_MIN -2147483648
#define INT_MAX 2147483647
#define UINT_MAX 4294967295
#define LONG_MIN -9223372036854775808
#define LONG_MAX 9223372036854775807
#define ULONG_MAX 18446744073709551615

In particular, 32-bit binary integers of type unsigned int can take one of the 232 =
4294967 296 possible values between 0 and 232 — 1 = 4294967 295. The special
name UINT_MAX is given to this mazimum unsigned integer, or largest counting
number. If z and y are positive integers with x 4+ y < UINT_MAX, then the addition
x + y will be correctly computed if performed using variables of type unsigned
int. Otherwise, the result will be the unique z € {0, 1,... UINT_MAX} that satisfies
x+y =z (mod UINT_MAX+1).

For positive z,y with 4y > UINT_MAX, it may be possible to perform ordinary
addition with variables of greater bit width such as long int or unsigned long
int. The 1999 C standard includes the types long long int and unsigned long
long int, too, which may have even more bits on a particular host.

There are two common ways of representing negative integers at fixed binary pre-
cision. The first is called sign and magnitude form; it consists of treating the most
significant bit as a sign bit. If 0, the number is positive. If 1, the number is negative.
The remaining bits are taken to be the absolute value of the integer and are inter-
preted as counting numbers. This method wastes one binary string representing —0.
To change x — —ux, just change the sign bit to its complement. The most negative
32-bit integer representable by sign and magnitude is —(23! — 1) = —2 147483 647,
and the largest positive signed integer is 23! — 1 = 2147483647 in 32-bit ones-

18 Chapter 1. Numbers and Arithmetic

0 2311 731 232_1 232
| y | Yy, ‘
f ! Ll
0 INT_MAX UINT_MAX
23] 2310 23
<< | y,
< l !
INT_MIN = -231+] 0 INT_MAX
231 2321 0 2311
L y | y,
gl !
INT_MIN = 23! -10 INT_MAX

Figure 1.1: Top: Unsigned 32-bit integers. Middle: Sign and magnitude interpre-
tation. Bottom: Twos complement interpretation. Numbers above each line are
the counting values, while those below the line are the represented values.

complement arithmetic. Standard C defines INT_MIN and INT_MAX, respectively, to
have these values on each host computer employing sign and magnitude form.

The second, more common integer representation is called twos complement
form. In this method, using w bits for a total of 2% — 1 numbers, the low half
[0,2w~! — 1] represent nonnegative integers, while the high half [2¥~1, 2% — 1] rep-
resent negative integers to which 2% has been added. The most significant bit again
determines the sign: 1 means negative, 0 means positive. This arrangement is de-
picted in Figure 1.1. It in turn has the drawback that the negative of a representable
integer is not always representable since ~INT_MIN is larger than INT_MAX.

The twos complement form of —x for a w-bit integer x is the counting number
represented by 2% — z, that is, the additive inverse of x modulo 2%. It is therefore
a simple bitwise operation to compute x — —zx in twos complement form: first
find the ones-complement by flipping 0 <+ 1 all the bits of =, and then increment
x < x+1. Flipping, or complementing a w-bit number x is the same as subtracting
it from 2% — 1, which is a string of w 1-bits, so these operations give [(2¥ — 1) —
z] +1 = 2" — z. For example, with w = 8 and z = 13 = 00001101 (base 2), the
ones complement of z is 242 = 11110010 (base 2), and the twos complement is
243 = 11110011 (base 2), which is congruent to —13 (mod 256).

Twos complement w-bit integer arithmetic is implemented in hardware as arith-
metic modulo 2%, with addition, subtraction, multiplication, integer division and
remainder performed by dedicated circuitry. Some checks must be built in, though.
It is possible to add two positive integers and get the representation of a negative
integer, for example 100 + 99 gives the 8-bit twos complement representation for
—57. This is called an integer overflow. Likewise, —100 — 99 produces the integer
underflow value 57. Underflow or overflow occurs if and only if the carry into the
sign or most significant bit is different from the carry out of the sign bit.

Logical operations such as order comparison and equality testing can be imple-
mented by subtraction modulo 2% followed by testing the sign bit or testing if all
bits are zero.

1.2. Real Numbers 19
1.2 Real Numbers

Denote by Q the set of rational numbers p/q, each of which is described!® by a
numerator p € Z and a denominator ¢ € Z, ¢ # 0. Each element of Q is therefore
completely described by a finite list of symbols. Of course, p/q = p’/q’ if and only
if p¢’ = p’q, but we can always find the unique representative of p/q in lowest terms
by the reduction p < p/ged(p, q), ¢ < q/ ged(p, q), followed by changing the sign
of both p and ¢, if necessary, to make ¢ > 0. A computer can store one rational
number in the same space needed for one integer, just by assigning a fixed subset
of bits for a nonnegative integer numerator, one bit for the sign, and the remaining
bits for the positive integer denominator.

Devices to perform rational number arithmetic are combinations of devices that
perform integer arithmetic. For example, p/q+p'/q = (p¢’ +1'q)/qq’ requires three
integer multiplications and one addition. The sign is carried by the numerator while
the denominators remains positive. Likewise, comparisons are derived from integer
comparisons: p/q < p’/q" if and only if pg’ < p’q, and so on.

Fractions and their “decimal expansions” can be written in any base just like in-
tegers, using the following interpretation: evaluate x = hy,_1...h1hg.h_1h_o...h_,,
(base B) as

h_ h_ h_
x:hn_l><B”—1_|_..._|_h1xB+h0_|_71_|_72+... m

e a3 (1.3)

The “decimal” point separates the integer and fractional parts of the number. In
this example, the fractional part of z can be rewritten as

hoyxB" '4h oxB™24+...4h_,
Bm ‘

(1.4)

The integer numerator from Equation 1.4, which is B™ times the fractional part of
x, may be used as input to the base-B conversion program. Its output will be the
m digits to the right of the decimal point printed least-significant-digit first. Then
a decimal point may be printed, followed by the digits of the integer part printed
least-significant-digit first:

Print the Integer Part and the First m Base-B Digits of x > 0

places(x, m, B):

[0] Let xf = fractional part of x, let xi = integer part of x
[1] For i = 1 to m, replace xf *= B

[2] For i = 1 to m do [3] to [4]

(3] Print xf%B

[4] Let xf = xf/B

[5] Print a decimal point

[6] Call digits(xi, B)

13We write p/q for convenience, we do not actually divide.

20 Chapter 1. Numbers and Arithmetic

Steps 2—4 of places() must be implemented differently than digits() so as
to print the leading zeros that the fractional part sometimes needs as decimal
placeholders. The same idea may be used to implement digits() nonrecursively,
but that is left as an exercise.

It has been known since ancient times that fairly simple problems have no exact
solutions in the rational numbers. A famous example, due to Euclid, is that /2
cannot be expressed as p/q for integers p, ¢ since then p?/q? = 2 implies that p? is
even, so p must be even, and then p? is really divisible by 4 so ¢ and thus ¢ must
be even. Hence p/q is not in lowest terms. But this applies to every p/q = v/2,
so were /2 rational, it would have no representative in lowest terms, which cannot
be. Hence we cannot solve the problem z? = 2 with z € Q.

We can easily find approximate solutions 2 € Q to the problem z? = 2:

12 < 2 <22 =1<vV2<2;
142 < 2 <15 =14<V2<15;
1412 < 2 < 1422 =141<+V2<1.42;
1414 < 2 < 1415 = 1.414 < /2 < 1.415;
1.4142135623% < 2 < 1.41421356242

= 1.4142135623 < V2 < 1.4142135624;

This procedure can be continued indefinitely with each step taking a fixed finite
amount of work to shrink the difference between the upper and lower estimate by
a factor of 10. It produces a Cauchy sequence, an unending list {x1,zs,...} of
numbers with the property that for every positive integer d, there is some starting
index N = N(107¢) such that n,Z N1, ... all have the same first d digits in their
decimal expansion. The rational approximations to v/2 given by the lower bounds
{1,1.4,1.41,1.414, ...} define a Cauchy sequence with N(10~9) = d since the first
d digits of z,, will be the same for all n > d. It is an easy exercise to show that the
following more traditional definition is equivalent:

Definition 2 The list {x1,z2,...} is a Cauchy sequence if, for every e > 0, there
is some N = N(¢) such that |z, — x| < € whenever bothn > N and m > N.

We may define the real numbers R to be the enlargement of Q that includes all
the infinite decimal expansions obtained using Cauchy sequences of rational num-
bers. Since rational numbers themselves have decimal expansions, this means that
R is the set of infinite decimal expansions. Numbers like 1 can also be considered
infinite decimals 1.00.. ., and so on.

Not only are there infinitely many real numbers, but most of them cannot be
specified exactly since that would require writing infinitely many digits. However,
a fixed-precision approximation to a real number often suffices. Humans write such
approximate values in scientific notation using base 10. For example, we write
314159 x 10" for the six-digit approximation to m. Computers unable to print

1.2. Real Numbers 21

superscripts would write .314159e+01. The mantissa or fractional part 314159
contains the six digits, while the exponent +01 indicates how to move the decimal
point, here one digit to the right, in order to get the usual decimal expansion
3.14159.

Note that 1 = 0.999..., since x = 0.99... satisfies 10x — z = 9. Thus two
different decimal expansions can represent the same real number. We will say
that two numbers z,y € R are equal if, for any Cauchy sequences {z,} and {y,}
representing = and y, respectively, the Cauchy sequence {x,,—y,, } represents 0. That
applies to {z,} ={1,1,1,...} and {y,} = {0.9,0.99,0.999, ...} since {x, — y,} =
{0.1,0.01,0.001, ...} which evidently represents 0.

The real number z represented by a Cauchy sequence {z, : n = 1,2,...} is
called its limit, and we write x = lim,,_, x,,. For every nonnegative integer d,
there is an integer N = N(10~%) such that the first d digits of zn,2n41,... all
agree with the first d digits of x. This is equivalent to the traditional definition:

Definition 3 We say that the limit x = lim,,_, o, x,, exists if, for every e > 0, there
is some N = N(e) such that |x — x,| < € whenever n > N.

If the limit of some sequence {x,} exists, we also say that x,, converges to asn
tends to infinity, and write x,, — = as n — oco. By our construction, every Cauchy
sequence of rational numbers has a unique real number as a limit. But once we
include those limits, we have a complete set:

Theorem 1.19 (Completeness of R) A Cauchy sequence of real numbers has a
unique real-number limit.

Proof: Suppose x1,z9,... is a Cauchy sequence of real numbers. For each d =
1,2,...,let N = N(10~%) be an integer such that the first d digits of zn,zn 11, ...
are the same. The first d digits of 2 define a rational number'*, which we may call
;. But then {a, x5, ...} is a Cauchy sequence of rational numbers that converges
to a unique real number, which we may denote by xz. But x,, converges to = too,
since for every ¢ > 0 there is some d with 1074 < ¢, and |z, — 2| < € for all
n > N(10~%). |

1.2.1 Precision and accuracy

Accuracy is the difference between the exact value of a quantity and its approximate
value. Precision is the difference between two adjacent approximate values. To say
that m is approximately 3.140000000 is to be precise but inaccurate. Using great
precision for quantities known to low accuracy is misleading.

Suppose that x¢ # 0 is a real number, considered to be the exact value of a
quantity, and x is another real number used to approximate xy. For example, =
might be an integer, or a fraction with denominator 2" representing m bits after
the decimal point such as the output of places(x0,m,2) defined on page 19.

14What power of 10 will be the denominator?

22 Chapter 1. Numbers and Arithmetic

Definition 4 Put Az < 4 — xo. Then:
e The absolute error of approximating xo by x is | — xo| = |Az|;
o The relative error of approzimating xo by x is |x — xo|/|xo| = |Az|/|xo|;

e The number of digits of accuracy in x is the largest natural number d such
that 10¢|Ax|/|zg| < 5. If the relative error is smaller than 1, then

o (29)]

e The number of bits of accuracy in an approximation of xg # 0 is the largest
natural number b such that 2°|Ax|/|xo| < 1. Again, if the relative error is

smaller than 1, then
|0l
b= |1 — .
{OgQ (|Ax|

Bits and digits of accuracy are related; each digit of accuracy is worth log,(10) ~
3.32 bits, so b =~ 3.32d.

When xy = 0, absolute error is still |Az|, but relative error is undefined and
digits of accuracy is calculated using absolute error.

To say that 3.14159 is the six-digit approximation to 7 means that 3.14158 <
m < 3.14160. The absolute error |3.14159 — | is also called the round-off error,
or sometimes the truncation error. It is always smaller than one unit at the least
significant digit of the mantissa. The error interval is determined by how the
approximate value was chosen. It is 3.14159 < 7 < 3.14160 if the approximation
just truncated a longer decimal expansion, but it is 3.141585 < 7 < 3.141595 if the
approximation rounded to the nearest six-digit decimal expansion.

1.2.2 Representing real numbers

A computer can only distinguish among finitely many representable values, lying in
some bounded range, and the format in which this is usually done is called floating-
point. Replacing a real number with a representable value introduces round-off error
which is relatively small if the real number lies in the bounded range. However,
there are always real numbers much larger and much smaller than any representable
value, which cannot be approximated with small round-off error. It is common to
treat such values as +0o and devise special arithmetic rules for them.

Binary computers keep internal representations of floating-point numbers as a
string of binary digits, just like integers, but the bits are interpreted differently. A
fixed number of bits give the sign and the base-two digits of the mantissa, while
the rest give the sign and magnitude of the exponent, just as in scientific notation.
Arithmetic algorithms for such strings of bits should be simple, so that logic circuits
to compute sums, products, sign changes, comparisons and so on are as simple as
possible. Unfortunately, there are many reasonable solutions to this design problem,

1.2. Real Numbers 23

so that different computers might use different floating-point formats and different
sets of representable values. They might therefore produce different outputs even
when running the same algorithm on identical inputs.

It is nevertheless possible to impose standards that control the maximum differ-
ence between the outputs of an algorithm on different machines. For example, the
Standard C programming language requires each host computer to have a standard
header file float.h that lists the number of bits devoted to the mantissa as well
as the smallest and largest representable positive numbers in two common formats:
float or single precision, and double precision.

Excerpt from float.h

#define FLT_RADIX

#define FLT_ROUNDS 1
#define FLT_MANT_DIG 24
#define FLT_MIN_EXP -125
#define FLT_MAX_EXP +128
#define FLT_MIN 1.17549435e-38
#define FLT_MAX 3.40282347e+38
#define FLT_EPSILON 1.19209290e-07

FLT_RADIX is the base of the number system, here 2, for binary. FLT_ROUNDS
indicates how the machine chooses representations for real numbers:

-1: no rounding is specified.

0: round toward 0. Choose the nearest representable value whose
absolute value is no greater than the number.

1: round toward the nearest representable value. Ties are broken with
a convention, for example, always choosing the representable value
whose least significant mantissa digit is even. Such a rule makes
the expected round-off error zero.

2: round toward —+oo, that is, round up. Choose the nearest repre-
sentable value greater than or equal to the number.

3: round toward —oo, that is, round down. Choose the nearest repre-
sentable value less than or equal to the number.

The next three numbers specify how many digits there are in the mantissa,
FLT_MANT_DIG, and the minimum FLT_MIN_EXP and maximum FLT_MAX_EXP values
for the exponent.

Standard C also specifies FLT_MIN and FLT_MAX, respectively the minimum and
maximum normalized positive numbers representable by the computer, namely
those that have a nonzero first digit in the mantissa. Smaller positive numbers
are representable by using the minimum exponent and mantissas beginning with
zero, but they fall into a special class called subnormal numbers and have fewer
digits of precision.

24 Chapter 1. Numbers and Arithmetic

< 32 bits
1
bitke—— 8bits —Pl—————————————— 23 bits
[K | e = biased exponent | f = fractional part]
bit e, bite, bitf, bitf 5

Figure 1.2: Schematic arrangement of bit fields in the single-precision (32-bit) IEEE
binary floating-point format.

The floating-point epsilon, FLT_EPSILON, is a key measure of precision and trun-
cation error. It is the difference between the floating-point representation of 1,
which is exact, and that of the “next larger” representable floating-point number.
On the example binary computer, this is 2722 ~ 1.19209 x 10~7, the value of the
least significant bit in a 24-bit mantissa divided by the value of the most significant
bit. This bounds the relative error of truncating a real number to the number of
digits available to the computer. It shall be called ey in this text. A related quan-
tity is the least positive number €y such that the floating-point representation of
1 + ¢p is different from that of 1. That is, the computer evaluates the comparison
1.0 + ¢g > 1.0 as true, but considers 1.0 + ¢ = 1.0 for any positive € less than .
Any real number can be represented by the computer with a relative error less than
€o. In all cases, 0 < €y < €f; on machines that round to the nearest representable
value, €g = %e;.

With this information, it is possible to compute the maximum error in a particu-
lar computation from particular inputs. Two implementations of an algorithm may
be considered equivalent if, for sufficiently many and varied inputs, their outputs
differ by no more than the sum of those maximum errors.

IEEE floating-point formats

The Institute for Electrical and Electronics Engineers, or IEEE, sponsored a com-
mittee that in 1985 published a standard format for 32-bit binary floating-point
computer arithmetic. The standard effectively defines a function v : R — R map-
ping any real number z to its nearest representable value v(x). It does that by
specifying how to store representable values as bit strings. Figure 1.2 shows how
bits are allocated into three fields s, e, and f in that format.

The s bit is 0 for positive numbers and 1 for negative numbers, that is, the sign
of the represented value is that of (—1)°. It is followed by an 8-bit exponent field
in which an unsigned integer is stored, most-significant bit first, as e = e; - - - ejeg
(base 2). This e is called the biased exponent, and it takes the values 0,1,...,255.
To obtain a signed value, a bias of 127 is subtracted to get the unbiased exponent:

E=e—12T=¢e;-2"+---+e;-2+e — 127. (1.5)

Thus —127 < E < +128. However, the values £ = —127 < e = 0, as well as
E = 4128 <> e = 255, are reserved to indicate special numbers like +00, so the valid
range of unbiased exponents in this format is —126 = E,,;, < E < Epae = +127.

1.2. Real Numbers 25

Let v be the real number represented by the bit strings s, e, f. Then v has the
following interpretation:

e If e =255 and f # 0, then v is Not a Number (NaN) regardless of the value
of s. This value is considered different from 4+oco and can be used to signal
invalid results.

e If e =255 and f =0, then v = (—1)°c0.

o If 0 < e < 255, then v = (—1)*2°7127 (1.f_; - - f_o3 (base 2)). This is also
written v = (—1)°2F (1.f). Normalized mantissas must have nonzero first
digit, so the fractional part of the number is supplied with a leading one:
1.f=1+f_1-271 4 ...+ f 53-2723 This gives a precision of 24 bits while
using only 23 actual bits. The extra bit of information is deduced from the
exponent.

elfe = 0and f # 0, then v = (=1)*27126(0.f_1--- f_o3 (base 2)) is a
subnormal or tiny number. Subnormal mantissas have leading digit zero:
0f =F 27 oot fog 2%,

e If e =0 and f = 0, then v = (—1)°0. For some operations, +0 and —0
are distinguished. In particular, v/—0 = —0 while v/+0 = +0. However, the
comparison —0 == +0 evaluates as true on all machines conforming to this
standard.

There is also a double precision format in which the unbiased exponent contains
11 bits, the normal bias is 1023, the subnormal bias is 1022, there are 52 actual
mantissa bits for a normal precision of 53 bits, and there is one sign bit. Conver-
sion from single to double precision is exact, but converting from double to single
precision involves rounding.

The floating-point format specifies certain arithmetic operations that must be
available such as addition, division, absolute value, and extraction of square roots.
It further requires that the output of those operations be the representable value
obtained by first performing the calculation in exact arithmetic and then rounding
to the available precision. This is achieved in practice by storing intermediate
results of calculations in extended formats at higher precision than the final result.
The IEEE requires extended formats to have at least a certain width, and also that
either each representable number is encoded as a unique bit string, or else different
bit strings representing the same value are not distinguished in any operation. For
example, the extended double precision format must have at least 64 bits of precision
and at least 79 bits total.

Computers with dedicated floating-point arithmetic circuitry typically perform
all floating-point calculations in the extended double format, then round for output
into either the single or double precision storage formats. The IEEE requirements
ensure that any peculiarities of the implementation remain invisible to the user,
and guarantee that all computers conforming to the standard will produce identical
results given identical inputs.

26 Chapter 1. Numbers and Arithmetic

Conversion from decimal notation into the binary format are also treated by
the standard, since many programs contain parameters entered by humans using
scientific notation. Conversion is required to be monotonic, that is, if z > y are two
real numbers represented in scientific notation, then the associated representable
value v(2) must not be smaller than v(y). All of the rounding procedures described
in the previous section are monotonic.

1.2.3 Propagation of error

In TEEE floating-point format with maximum representable value M = FLT_MAX

and minimum normalized positive representable value m = FLT_MIN, the nor-

mally representable set is defined by NR [-M,—m] U [m, M]. Tt consists of

the nonzero real numbers x that are approximated by v(z) within relative error e;:

v(z) v(z)

—1|<er <— 11— < —=<1+c¢€
- ‘—f f= z = f

Typically, 0 < €5 < 107% < 1, so this implies that v(x) # 0 and that the reciprocal
x/v(x) satisfies essentially the same bounds:

1 x
‘:1+€f+0(6?)

1— O(e%) = < <
&t (ef) 1+6f_1}((£)_176f

The higher order terms may be ignored for typical €7, or we may preserve exact
inequality simply by replacing e¢; < €;/(1 — ¢7). Alternatively, in a computer
that rounds to the nearest representable value as indicated by FLT_ROUNDS=1, the
relative error bounds hold with ¢y = %e r, making both inequalities exact without

any modification of €. Then we may multiply either expression by the denominator

to get equivalent bounds for Ax def v(x), the error of representation:

[Az| <erlo(@)l; [Az| < el (1.6)

Conditioning of arithmetic

A computation = — y is said to be well-conditioned if the relative error in y is
comparable to the relative error in . On a finite precision computer, the input =
can have a relative error as large as €y, so the conditioning of a single calculation
“from exact inputs” is usually stated as the multiple of €; that we get for the
relative error of y, given a relative error of € in .

When there are several inputs (1, ...,z,) — ¥y, it is assumed that they all have
relative error €y, with the “worst” combination of signs.

An ill-conditioned calculation is one that can greatly magnify relative error. Ill
conditioning arises in truncated infinite algorithms if many steps combine to greatly
magnify small initial errors. For example, the Fibonacci sequence of Equation 1.1
begins with the initial values Fy = 0 and F; = 1. Starting with different initial
values I, = 1 and F| = ¢_ gives a sequence Fj, = oF — 0 as k — oo, since

1.2. Real Numbers 27

|p—|] < 1. However, modifying the different initial condition however slightly to
F§ =1+ € for any € > 0 gives a sequence |F}| = co as k — oco. By choosing large
enough k we can magnify the relative error in F}, compared to the relative error e
in Fy, by an arbitrarily large amount.

Sums and differences can be ill-conditioned because of catastrophic cancellation.
Suppose z, y, x + y, and v(z) + v(y) all belong to NR. The IEEE procedure
to compute x + y is first to approximate = by v(z) and y by v(y), then to find
v(x) + v(y) in exact arithmetic, and finally to find the nearest representable value
v (v(z) +v(y)). The absolute error after this calculation is the difference between
the exact value z+y and the computed value v (v(z) + v(y)). It can be estimated as
follows, regardless of the rounding method used to obtain the representable value:

[z +y—v(v@)+o)| < |lz-v@)] + ly o)l
+ [v(@) + v(y) — v (v(@) + v(y))|
(I + Iyl + [v(2) +v(¥)]) €

Dividing by |z + y| and ignoring the O(e?) terms gives the relative error of the sum:

|x|+|y>
< (14 BT 1.7
(eyl) .7

The three terms contributing to this error can differ greatly in magnitude. For
example, if z +y =~ 0 but z =~ —y = 1, then (|z| + |y|)/|z + y| is much greater that
1 and thus dominates the error estimate. In this case it is possible that the relative
error in x + y vastly exceeds the relative error in x or y. As an example, consider
approximating f(t+h)— f(t) with f(t) = t2, t = 1.112233, and h = 1.000000 x 10~
using single-precision arithmetic. Then f(t + h) = 1.112234% ~ 1.237064 and
f(t) = 1.1122332 =~ 1.237062, so

F(t +h) — f(t) = 1.237064 — 1.237062 = 0.000002 = 2.000000 x 107,

A

IN

z+y—v(v(e) +o(y))
T+y

instead of the correctly rounded single-precision value 2.224467 x 10~% obtained
from exact arithmetic. The relative error in the result is around 1.1 x 10~ instead
of € &~ 1.2 x 1077; it has been magnified about a millionfold.

However, there is no cancellation when z and y have the same sign, so |z|+|y| =
|z + y|, making the relative error of the sum no more than 2¢;.

Products and quotients, by contrast, are always well-conditioned. If z, y, zy,
and v(z)v(y) all belong to NR, then an argument like that used to prove the
product rule in calculus shows:

lzy —v(v(@)o(y))] < [(z—v@)yl + |(y—v(y) o)
+ [v(z)o(y) — v(v(z)v(y))]
< 3ey |xyl.
The final step depends on Equation 1.6 and the assumption that 0 < ¢y < 1.
Hence,
zy —v(v(z)v(y))
zyY

< 3ey, (1.8)

28 Chapter 1. Numbers and Arithmetic

so the relative error in the product zy is no more than three times the maximum
relative error €y of each of the factors.
Quotients are products involving a reciprocal. The error of calculation for a

reciprocal is

1 1 < 1 n 1 n 1 1 <9 1
~—v|— - =) —v|—— =
z ! v())| T |z “\o \z v(x) I

Here it is assumed that # 0, x € NR, and 1/v(z) € NR, as well as that 1
is exactly representable: v(1) = 1. The final step uses Equation 1.6 under the
assumption that 0 < ey < 1. Hence the relative error of calculating the reciprocal

1S
1 1
Lo (o)

so each reciprocal in a product adds at most 2ef, rather than at most €¢, to the
relative error of the result. Combining the product and reciprocal formulas gives

< 2ey,

8=

Y _ (2w
M < 4e (1.9)
U f. .

T
Thus quotients, like products, are well-conditioned computations.

*Functions

Suppose that F' = F(z) is a function of one real variable that satisfies a Lipschitz
condition, namely that it has some constant M = Mp such that for all z,y € R,

|F(z) = F(y)| < Mz —y| (1.10)

Any implementation of F' actually computes v(F (v(x))), since the computer con-
verts any real-number input x into its representable value v(z), and at best produces
a representable output for the exact value F(v(x)), even if intermediate steps are
exact. To estimate this error we first break it into two parts:

|F(2) = v(F(v(2)))| |F(2) = F(o(z)) + F(o(x)) = v(F(v(x)))]

< [F(z) = F(o(@))] + [F(v(z)) — o(F(v(2)))].
For the first term, use the Lipschitz condition to write
|F(z) = F(v(2))] < M|z —v(z)| < Mlzles.
The second term may be estimated by

[F(v(z)) —o(F(u(@)] < [F(o(z))]es
= |F(2) + F(u(x)) — F(x)lef

1.3. Exercises 29

< (P +F(@) - F@)) e
< (F@)+ M) o)) ¢

< (P + M)

< (1 e) @

These estimates combine to give |F'(z)—v(F (v(z)))| < (M|z| + (1 4+ Mey)|F(x)|) €5.
Thus dividing by F(x) # 0 yields:

F(z) —v(F(v(z))) Mlz| \
F(m) ‘ < <1+M€f + |F(CL')|) f- (1.11)

Computing F' is well-conditioned if M|z| ~ |F(x)| and Me; ~ 1, but can be ill-
conditioned if M|z| > |F(x)| or Mes > 1.

If £ = (21,...,2,), and F = F(z) is a function of several variables satisfying
the Lipschitz condition

|F(z) = F(y)| < ZMk|CEk = Ykl
%

then by a similar argument we get

’F(x) ;((;(v(a:)))‘ _ <1+W> . (1.12)

Such a multivariable inequality applies to products and quotients. For example, let
n =2 and put F(z) = z12x2. Then M; =~ |x2| and My =~ |x1| for z within ey < 1 of
2. The right-hand side of Inequality 1.12 simplifies to

|zo21| + $1$2|>
I e e S E R
< |z2m: | d !

as in Inequality 1.8. The case of quotients is left as an exercise.

1.3 Exercises

1. Suppose a divides b and b divides a. Must a = b?

2. Write a computer program that finds the greatest common divisor of two
integers a and b, assuming a > b > 0.

3. Prove that distinct primes are relatively prime.

4. Find the greatest common divisor of the three numbers 299 792 458, 6 447 287,
and 256 964 964.

5. Find the quasi-inverse of 2301 modulo 19 687. (Hint: implement the extended
Euclid algorithm first.)

30

10.

11.

12.

13.

14.

15.

16.

Chapter 1. Numbers and Arithmetic

Implement the Miller—Rabin primality test for odd N under the assumption
that 2 < N < 341550071 728 321.

Prove that integer overflow or underflow occurs in w-bit twos complement
integer arithmetic if and only if the carry into the sign bit is different from
the carry out of the sign bit.

Express the integer 14600926 (base 10) in hexadecimal.
Prove that if p € Z is a prime number, then ,/p is not a rational number.

Write a computer program to read an integer in decimal notation and then
print its binary digits and its hexadecimal digits. (Hint: most computers ex-
pect decimal number inputs and thus have built-in functions to read them.)

Convert the approximation 7 ~ 3.1415926535897932 (base 10) into the near-
est 8-digit hexadecimal fraction.

Using 52 bits to represent the mantissa in IEEE binary floating-point format,
how many decimal digits of accuracy are obtained?

What will lecozsl 1.0 equal on the example computer on p. 23, which uses
IEEE 32-bit floating-point arithmetic?

Write a program to read 32-bit IEEE binary floating-point format and print
the number in scientific notation. Have it treat NaN, d+oo, and +0 properly
and have it signal when the number is subnormal.

Derive Inequality 1.9 from Inequality 1.12.

Determine and prove whether the following computations are well-conditioned
or ill-conditioned:

a. (z,y) = a2+ y? forx #0and y £ 0
b. x — xlogx, for x > 0

c. x|z

1.4 Further Reading

e ANSI/IEEE. Standard for Binary Floating-Point Arithmetic. Document 754-

1985, catalog number SH 10116-NYF. ISBN 1-55937-653-8.

e Donald Knuth. Fundamental Algorithms, volume 1. Addison-Wesley, Read-

ing, Massachusetts, second edition, 1973. ISBN 0-201-03809-9.

e Behrooz Parhami. Computer Arithmetic: Algorithms and Hardware Designs.

Oxford University Press, New York, 2000. ISBN 0-19-512583-5.

