Math 450: Mathematics for Multimedia Midterm Examination

Name: \qquad
Wednesday, 8 March 2017
7 problems on 7 pages

Use only this test and a pen or pencil. Please write your complete answers in the space provided. You have 50 minutes.

1. Give a 3 hexadecimal digit approximation to $1 / 3$.
2. (a) How many integers in the set $\{0,1, \ldots, 34\}$ are relatively prime with 35 ?
(b) Find an integer x such that $14 x \equiv 1(\bmod 35)$ or prove that none exists.
3. Suppose that \mathbf{x}, \mathbf{y} are vectors in an inner product space \mathbf{X}, with $\|\mathbf{y}\|=5$ and $\|\mathbf{x}\|=2$.
(a) What is the minimum possible value of $\langle\mathbf{x}, \mathbf{y}\rangle$?
(b) What is the minimum possible value of $\|\mathbf{x}+\mathbf{y}\|$?
4. Suppose that $B=\left\{b_{1}, b_{2}, b_{3}\right\}$ is the basis of the inner product space \mathbf{R}^{3} consisting of the vectors

$$
b_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad b_{2}=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right), \quad b_{3}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) .
$$

Let $B^{\prime}=\left\{b_{1}^{\prime}, b_{2}^{\prime}, b_{3}^{\prime}\right\}$ be the biorthogonal dual basis to B.
(a) Show that $b_{1} \in \operatorname{span}\left\{b_{2}^{\prime}, b_{3}^{\prime}\right\}^{\perp}$.
(b) Find scalars c_{1}, c_{2}, c_{3} such that

$$
\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right)=c_{1} b_{1}^{\prime}+c_{2} b_{2}^{\prime}+c_{3} b_{3}^{\prime},
$$

or prove that no such scalars exist. (Hint: it is not necessary to find $b_{1}^{\prime}, b_{2}^{\prime}, b_{3}^{\prime}!$)
5. Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the linear transformation defined by $T(x, y)=(x+y, x-y)$. Compute $\|T\|_{\text {op }}$ with respect to the usual Euclidean norms.
6. Suppose that the complex exponential Fourier series of the 1-periodic function

$$
f(t) \stackrel{\text { def }}{=} \sum_{n=-\infty}^{\infty} c(n) e^{2 \pi i n t}
$$

has coefficients $c(n)=0$ for $n<0$ and $c(n)=(1 / 2)^{n}$ for $n \geq 0$. Find $f(1 / 2)$.
7. Suppose that $f=f(x)$ has Fourier integral transform

$$
g(\xi) \stackrel{\text { def }}{=} \int_{-\infty}^{\infty} f(x) e^{-2 \pi i x \xi} d x .
$$

Compute the Fourier integral transform of $3 f(2 x-1)$ in terms of g.

