Math 450: Mathematics for Multimedia Midterm Examination

Name: \qquad
Wednesday, 6 March 2019
7 problems on $1+7$ pages

Use only this test and a pen or pencil. Please write your complete answers in the space provided. You have 50 minutes.

Note: The inverse of a 2×2 matrix is

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right),
$$

which exists if and only if determinant $a d-b c \neq 0$.

1. (a) Compute the sum $A 2+1 B$ (base 16). Give the answer in hexadecimal (base 16) and also in binary (base 2).
(b) Let $x=0 . B B B B B \ldots$ (base 16) be the repeating hexadecimal consisting of the repeated digit B. Write x as a rational number in decimal (base 10) and hexadecimal (base 16).
2. (a) How many integers in the set $\{0,1,2,3, \ldots, 61,62\}$ are relatively prime with 63 ?
(b) Evaluate $8^{37}(\bmod 63)$. (Hint: use the result from part a.)
3. Suppose that \mathbf{x}, \mathbf{y} are vectors in \mathbf{R}^{17}, with $\|\mathbf{x}+\mathbf{y}\|=\|\mathbf{x}-\mathbf{y}\|=5$.
(a) Evaluate $\langle\mathbf{x}, \mathbf{y}\rangle$.
(b) Evaluate $\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}$.

Here \langle,$\rangle and \|\cdot\|$ are the usual inner product and derived norm of Euclidean space.
4. Suppose that $B=\left\{b_{1}, b_{2}\right\}$ is the basis of the inner product space \mathbf{R}^{2} consisting of the vectors

$$
b_{1}=\binom{1}{1}, \quad b_{2}=\binom{1}{-1} .
$$

Let $B^{\prime}=\left\{b_{1}^{\prime}, b_{2}^{\prime}\right\}$ be the biorthogonal dual basis to B.
(a) Find the vectors in B^{\prime}.
(b) Find scalars c_{1}, c_{2} such that

$$
\binom{4}{2}=c_{1} b_{1}+c_{2} b_{2}
$$

5. Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the linear transformation defined by $T(x, y)=(2 x+y, x-2 y)$. Compute $\left\|T^{2}\right\|_{\text {op }}$ with respect to the usual Euclidean norms.
6. Compute the complex exponential Fourier series of the 1-periodic function $f(t)=\cos ^{2}(17 \pi t)$, namely, find the coefficient $c(n)$ for every integer n that gives

$$
f(t)=\sum_{n=-\infty}^{\infty} c(n) e^{2 \pi i n t}
$$

7. Suppose that $f=f(x)$ has Fourier integral transform

$$
g(\xi) \stackrel{\text { def }}{=} \int_{-\infty}^{\infty} f(x) e^{-2 \pi i x \xi} d x .
$$

Compute the Fourier integral transform of $2 f\left(\frac{1}{3} x-5\right)$ in terms of g.

