Ma 450: Mathematics for Multimedia

Solution: to Homework Assignment 1

Prof. Wickerhauser

Due Sunday, February 5th, 2023

1. Suppose that a, b, and c are positive integers, a divides $b+c$, and a divides $2 b+c$.
(i) Must a divide b ?
(ii) Must a divide c ?

Solution:

(i) Yes, a must divide b, since it divides the difference $2 b+c-(b+c)=b$.
(ii) Yes, a must divide c, since if a divides $b+c$ then it divide $2(b+c)$, and thus it divides the difference $2(b+c)-(2 b+c)=c$.
2. The greatest common divisor of $n \geq 2$ positive integers may be defined recursively by induction on n, using the greatest common divisor function $\operatorname{gcd}(a, b)$ for two positive integers a, b :

$$
\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right) \stackrel{\text { def }}{=} \operatorname{gcd}\left(\operatorname{gcd}\left(a_{1}, \ldots, a_{n-1}\right), a_{n}\right)
$$

(Note: Octave already implements this generalized gcd.)
The least common multiple $\operatorname{lcm}\left(a_{1}, \cdots, a_{n}\right)$ of $n \geq 2$ integers is the smallest positive integer divisible by every a_{i}. Namely, it satisfies
lcm-1: $\quad(\forall i) a_{i} \mid \operatorname{lcm}\left(a_{1}, \cdots, a_{n}\right)$.
$\mathbf{l c m - 2 :}$ If N is divisible by every a_{i}, then $\operatorname{lcm}\left(a_{1}, \cdots, a_{n}\right) \mid N$.
(i) Show that $\operatorname{lcm}(a, b)=\frac{a b}{\operatorname{gcd}(a, b)}$.
(ii) Find $\operatorname{lcm}\left(a_{1}, \ldots, a_{n}\right)$ using induction on n. (Note: MATLAB/Octave likewise implements this generalized 1 cm . You can use it to check you results.)

Solution:

(i) First proof, using two inequalities:
(\geq) Since $a b$ is divisible by both a and b, it follows from $\operatorname{lcm}-2$ that $\operatorname{lcm}(a, b) \mid a b$.
Hence $d=\frac{a b}{\operatorname{lcm}(a, b)}$ is an integer. Observe that $d \mid a$, since $\frac{a}{d}=\frac{a \operatorname{lcm}(a, b)}{a b}=\frac{\operatorname{lcm}(a, b)}{b}$, which is an integer because $b \mid \operatorname{lcm}(a, b)$ by lcm-1. Similarly, $d \mid b$. Hence d is a common divisor of a and b, and by gcd- 2 it follows that $d \mid \operatorname{gcd}(a, b)$, $\operatorname{so} \operatorname{gcd}(a, b) \geq d$, so

$$
\operatorname{gcd}(a, b) \geq \frac{a b}{\operatorname{lcm}(a, b)} \quad \Rightarrow \quad \operatorname{lcm}(a, b) \geq \frac{a b}{\operatorname{gcd}(a, b)}
$$

(\leq) Write $a=x \operatorname{gcd}(a, b)$ and $b=y \operatorname{gcd}(a, b)$ using the two integer quotients $x=a / \operatorname{gcd}(a, b)$ and $y=b / \operatorname{gcd}(a, b)$. Then

$$
N=\frac{a b}{\operatorname{gcd}(a, b)}=x y \operatorname{gcd}(a, b)=x b=y a
$$

evidently satisfies $a \mid N$ and $b \mid N$. It follows from $\operatorname{lcm}-2$ that $\operatorname{lcm}(a, b) \mid N$, so $\operatorname{lcm}(a, b) \leq N$, so

$$
\operatorname{lcm}(a, b) \leq \frac{a b}{\operatorname{gcd}(a, b)} .
$$

Combining the two inequalities yields the result.
Second proof, using prime factorization:
Let $P=\left\{p_{1}, \ldots, p_{k}\right\}$ be the set of distinct prime factors of a and b. Thus $p \in P$ if and only if $p \mid a$ or $p \mid b$, and $i \neq j$ implies $p_{i} \neq p_{j}$. Then the prime factorizations of a and b may be written as

$$
\begin{aligned}
a & =p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}, \quad n_{i} \in\{0,1,2, \ldots\}, \\
b & =p_{1}^{m_{1}} \cdots p_{k}^{m_{k}}, \quad m_{i} \in\{0,1,2, \ldots\} .
\end{aligned}
$$

Note that the exponent n_{i} is positive if and only if $p_{i} \mid a$, and so on. In this notation it is easy to see that

$$
\begin{aligned}
a b & =p_{1}^{n_{1}+m_{1}} \cdots p_{k}^{n_{k}+m_{k}}, \\
\operatorname{gcd}(a, b) & =p_{1}^{\min \left(n_{1}, m_{1}\right) \cdots p_{k}^{\min \left(n_{k}, m_{k}\right)},} \\
\operatorname{lcm}(a, b) & =p_{1}^{\max \left(n_{1}, m_{1}\right) \cdots p_{k}^{\max \left(n_{k}, m_{k}\right)},},
\end{aligned}
$$

and the result follows from the rules of exponents and the identity that $\min (n, m)+\max (n, m)=n+m$ for any numbers n, m.
(ii) As with gcd, the inductive step uses the definition of $\operatorname{lcm}(a, b)$:

$$
\operatorname{lcm}\left(a_{1}, \ldots, a_{n}\right) \stackrel{\text { def }}{=} \operatorname{lcm}\left(\operatorname{lcm}\left(a_{1}, \ldots, a_{n-1}\right), a_{n}\right),
$$

for $n>2$. However, it requires proof that this formula produces a value satisfying lcm- 1 and lcm- 2 . This may be done by induction on n.
The base case, $n=2$, holds by part (i). Next, for $n>2$, suppose that $\operatorname{lcm}\left(a_{1}, \ldots, a_{n-1}\right)$ is the least common multiple and check the properties of $\operatorname{lcm}\left(a_{1}, \ldots, a_{n}\right)$ as defined:

First proof, checking lcm-1 and lcm-2 directly:
Let $M=\operatorname{lcm}\left(\operatorname{lcm}\left(a_{1}, \ldots, a_{n-1}\right), a_{n}\right)$. Then $a_{n} \mid M$ by definition. But also $a_{i} \mid \operatorname{lcm}\left(a_{1}, \ldots, a_{n-1}\right)$ for all $i=1, \ldots, n-1$ by the inductive hypothesis, so $(\forall i) a_{i} \mid M$. This proves that lcm- 1 holds for M.
Now suppose that N is divisible by a_{1}, \ldots, a_{n}. Then N is divisible by $\operatorname{lcm}\left(a_{1}, \ldots, a_{n-1}\right)$ by lcm- 2 for the case $n-1$. But N is also divisible by a_{n} by hypothesis, so apply lcm- 2 in the case $n=2$ to conclude that N is divisible by M. This proves $\operatorname{lcm}-2$ for the case n, so $M=\operatorname{lcm}\left(a_{1}, \ldots, a_{n}\right)$. This completes the proof by induction.

Second proof, using prime factorization:

It is convenient to use the complete (countably infinite, ordered) list of primes $P=\{2,3,5,7, \ldots\}=$ $\left\{p_{1}, p_{2}, \ldots\right\}$ and then write, for each i,

$$
a_{i}=p_{1}^{m_{i 1}} p_{2}^{m_{i 2}} \cdots
$$

where $m_{i j}=0$ for all but finitely many values of j (which depend on the prime factorization of a_{i}). But then

$$
\operatorname{lcm}\left(a_{1}, \ldots, a_{n}\right)=p_{1}^{\max \left(m_{11}, \ldots, m_{n 1}\right)} p_{2}^{\max \left(m_{12}, \ldots, m_{n 2}\right)} \ldots
$$

and the formula $\operatorname{lcm}\left(a_{1}, \ldots, a_{n-1}, a_{n}\right)=\operatorname{lcm}\left(\operatorname{lcm}\left(a_{1}, \ldots, a_{n-1}\right), a_{n}\right)$ follows from the fact that

$$
\max \left(m_{1}, \ldots, m_{n-1}, m_{n}\right)=\max \left(\max \left(m_{1}, \ldots, m_{n-1}\right), m_{n}\right)
$$

3. (i) Suppose that $a+3 b$ and $17 a-b$ are relatively prime. Must a and b be relatively prime?
(ii) Suppose that a and b are relatively prime. Must $a+3 b$ and $17 a-b$ be relatively prime?

Solution: (i) Yes. Any common divisor of a and b also divides both $a+3 b$ and $17 a-b$.
(ii) No. For a counterexample, let $a=1$ and $b=1$. Then a and b are relatively prime, but $a+3 b=4$ and $17 a-b=16$ share the common divisor 4 .
4. Let $a=123456$ and $b=78901$.
(i) Find the greatest common divisor d of a, b.
(ii) Find integers s and t such that $s a+t b=d$.

Solution: Use Octave. Its built-in gcd() performs the extended Euclid algorithm with the call $[\mathrm{d}, \mathrm{s}, \mathrm{t}]=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$, returning values satisfying $s a+t b=d$.
(i) $\operatorname{gcd}(123456,78901)$ gives ans $=1$ by Euclid's algorithm.
(ii) $[d, s, t]=\operatorname{gcd}(123456,78901)$ gives $d=1, s=-1082, t=1693$ by the extended Euclidean algorithm.
5. (i) Is there an integer x such that $85 x-1$ is divisible by 2023? Find it, or prove that none exists.
(ii) Is there an integer y such that $58 y-1$ is divisible by 2023? Find it, or prove that none exists.

Solution: Use Octave. Its built-in gcd() performs the extended Euclid algorithm with the call $[\mathrm{d}, \mathrm{x}, \mathrm{y}]=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$, returning values satisfying $x a+y b=d$.
(i) By Lemma 1.9, no such integer exists, since $85=5 \cdot 17$ and $2023=7 \cdot 17^{2}$ are not relatively prime: $\operatorname{gcd}(85,2023)=17 \neq 1$.
(ii) Yes, such a y exists by Lemma 1.9 since $58=2 \cdot 29$ and $2023=7 \cdot 17^{2}$ are relatively prime: $\operatorname{gcd}(58,2023)=1$.
Use the extended Euclid algorithm to find $y=872: 872 \cdot 58-1=50575=25 \cdot 2023$.
6. (i) Express the integer 101110101100 (base 10) in hexadecimal.
(ii) Find the rational number represented by the repeating hexadecimal expansion $0 . \overline{C A F E}$ (base 16).

Solution:

(i) 101110101100 (base 10) equals $178 A A 1 B 46 C$ (base 16). Find it using the Octave command dec2hex (101110101100) on a contemporary 64 -bit computer.
This calculation can be also be done on a 32-bit computer after the observation

$$
101110101100=394961332 \times 256+108=394961332 \times 16^{2}+108
$$

But 394961332 (base 10$)=178 A A 1 B 4$ (base 16) gives the leading hexadecimal digits, while 108 (base $10)=6 C$ (base 16) gives the two lowest-order hexadecimal digits. These last two calculations only need 32 -bit integers.
(ii) Let $x=0 . \overline{C A F E}$ (base 16) denote the number. Then

$$
16^{4} x-x=C A F E(\text { base } 16)=12 \times 16^{3}+10 \times 16^{2}+15 \times 16+14=51966
$$

(This may also be found using Octave command hex2dec("CAFE").) Solving gives $x=51966 / 65535 \approx$ 0.7929503318837262
7. Prove that if p is a prime number, then \sqrt{p} is not a rational number.

Solution: If \sqrt{p} were a rational number, we could write $\sqrt{p}=a / b$ in lowest terms, namely using relatively prime $a, b \in \mathbf{Z}$. But then $p b^{2}=a^{2}$, so p divides a^{2}. By Lemma $1.3, p$ divides a, so we can write $a=p a_{0}$ with $a_{0} \in \mathbf{Z}$. But then $p=p^{p} a_{0}^{2} / b^{2}$, so $b^{2}=p a_{0}^{2}$ and consequently p divides b^{2}. Again by Lemma $1.3, p$ divides b. Hence a, b share the common divisor $p>1$, contradicting the hypothesis that they are relatively prime.
8. What is the smallest positive subnormal number in IEEE double precision 64-bit binary floating-point format?

Solution: The exponent of a subnormal number is -1022 , although it is tagged with an unbiased exponent of -1023 . Use -1022 with a mantissa full of 51 leading zeros and a single one in the least significant bit to get the smallest subnormal number:

$$
0.0000000000 \ldots 01(\text { base } 2) \times 2^{-1022}=2^{-1074} \approx 4.9406 \times 10^{-324}
$$

Note that only the first mantissa is written in base 2; all other expansions are decimal.
9. Implement the Miller-Rabin primality test for odd N satisfying $2<N<341550071728321$. Use it to find a 14 -digit prime that is not known to Google. (Hint: you may seek and use an implementation available on the web.)

Solution: The stated limits on N imply that no strong liars exist for the Miller-Rabin test. Function NextPrime [49332378234519] found online at Wolfram Alpha implements it and gives the result 49332378234571. Here the "random" input 49332378234519 is an arbitrary 14 digit number that happens to give a prime which does not appear in a Google search.
NOTE: a previous model solution set from 2014 contains this prime and is discoverable by a Google search, so you must find another.
10. Using the primes $p=17$ and $q=19$, implement the RSA encryption algorithm with $e=23$ and modulus $M=p q=323$. Namely, find d and $\phi(M)$. Then encode the cleartext value 314 and decode the cyphertext value 255. Check your results by decrypting the cyphertext and encrypting the cleartext. (Hint: search the web for RSA MATLAB.)

Solution: First compute $\phi(M)=(17-1)(19-1)=288$ and find the quasi-inverse with the extended Euclid algorithm:
$\mathrm{p}=17, \mathrm{q}=19$, en=23, $\mathrm{M}=\mathrm{p} * \mathrm{q}, \mathrm{phi} \mathrm{M}=(\mathrm{p}-1) *(\mathrm{q}-1)$
$[c, x, y]=\operatorname{gcd}(e n, p h i M) \%$ then $c=x * e n+y * p h i M$, so $x * e n=c$ (mod phiM)
This gives the quasi-inverse $x=-25$ which must be shifted into the range $[1, \phi(M)-1]$ by adding $\phi(M)$, giving $d=263$. Use the MathWorks modular exponentiation function crypt (a, e, M) function to get cyphertext crypt $(314,23,323)==117$ from cleartext 314 . Likewise, crypt $(255,263,323)$ gives the cleartext 221 from cyphertext 255 . Check by applying the inverses: crypt $(117,263,323)==314$, $\operatorname{crypt}(221,23,323)==255$.

