
Ma 450: Mathematics for Multimedia

Solution: to Homework Assignment 1

Prof. Wickerhauser

Due Sunday, February 5th, 2023

1. Suppose that a, b, and c are positive integers, a divides b+ c, and a divides 2b+ c.

(i) Must a divide b?

(ii) Must a divide c?

Solution:

(i) Yes, a must divide b, since it divides the difference 2b+ c− (b+ c) = b.

(ii) Yes, a must divide c, since if a divides b+c then it divide 2(b+c), and thus it divides the difference
2(b+ c)− (2b+ c) = c. 2

2. The greatest common divisor of n ≥ 2 positive integers may be defined recursively by induction on n,
using the greatest common divisor function gcd(a, b) for two positive integers a, b:

gcd(a1, . . . , an)
def
= gcd(gcd(a1, . . . , an−1), an).

(Note: Octave already implements this generalized gcd.)

The least common multiple lcm(a1, · · · , an) of n ≥ 2 integers is the smallest positive integer divisible
by every ai. Namely, it satisfies

lcm-1: (∀i)ai|lcm(a1, · · · , an).

lcm-2: If N is divisible by every ai, then lcm(a1, · · · , an)|N .

(i) Show that lcm(a, b) =
ab

gcd(a, b)
.

(ii) Find lcm(a1, . . . , an) using induction on n. (Note: MATLAB/Octave likewise implements this
generalized lcm. You can use it to check you results.)

Solution:

(i) First proof, using two inequalities:

(≥) Since ab is divisible by both a and b, it follows from lcm-2 that lcm(a, b)|ab.

Hence d =
ab

lcm(a, b)
is an integer. Observe that d|a, since

a

d
=
a lcm(a, b)

ab
=

lcm(a, b)

b
, which is

an integer because b|lcm(a, b) by lcm-1. Similarly, d|b. Hence d is a common divisor of a and b,
and by gcd-2 it follows that d| gcd(a, b), so gcd(a, b) ≥ d, so

gcd(a, b) ≥ ab

lcm(a, b)
⇒ lcm(a, b) ≥ ab

gcd(a, b)
.
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(≤) Write a = x gcd(a, b) and b = y gcd(a, b) using the two integer quotients x = a/ gcd(a, b) and
y = b/ gcd(a, b). Then

N =
ab

gcd(a, b)
= xy gcd(a, b) = xb = ya

evidently satisfies a|N and b|N . It follows from lcm-2 that lcm(a, b)|N , so lcm(a, b) ≤ N , so

lcm(a, b) ≤ ab

gcd(a, b)
.

Combining the two inequalities yields the result.

Second proof, using prime factorization:

Let P = {p1, . . . , pk} be the set of distinct prime factors of a and b. Thus p ∈ P if and only if p|a or
p|b, and i 6= j implies pi 6= pj . Then the prime factorizations of a and b may be written as

a = pn1
1 · · · p

nk

k , ni ∈ {0, 1, 2, . . .},
b = pm1

1 · · · p
mk

k , mi ∈ {0, 1, 2, . . .}.

Note that the exponent ni is positive if and only if pi|a, and so on. In this notation it is easy to see
that

ab = pn1+m1
1 · · · pnk+mk

k ,

gcd(a, b) = p
min(n1,m1)
1 · · · pmin(nk,mk)

k ,

lcm(a, b) = p
max(n1,m1)
1 · · · pmax(nk,mk)

k ,

and the result follows from the rules of exponents and the identity that min(n,m)+max(n,m) = n+m
for any numbers n,m.

(ii) As with gcd, the inductive step uses the definition of lcm(a, b):

lcm(a1, . . . , an)
def
= lcm(lcm(a1, . . . , an−1), an),

for n > 2. However, it requires proof that this formula produces a value satisfying lcm-1 and lcm-2.
This may be done by induction on n.

The base case, n = 2, holds by part (i). Next, for n > 2, suppose that lcm(a1, . . . , an−1) is the least
common multiple and check the properties of lcm(a1, . . . , an) as defined:

First proof, checking lcm-1 and lcm-2 directly:

Let M = lcm(lcm(a1, . . . , an−1), an). Then an|M by definition. But also ai|lcm(a1, . . . , an−1) for all
i = 1, . . . , n− 1 by the inductive hypothesis, so (∀i)ai|M . This proves that lcm-1 holds for M .

Now suppose that N is divisible by a1, . . . , an. Then N is divisible by lcm(a1, . . . , an−1) by lcm-2 for
the case n−1. But N is also divisible by an by hypothesis, so apply lcm-2 in the case n = 2 to conclude
that N is divisible by M . This proves lcm-2 for the case n, so M = lcm(a1, . . . , an). This completes
the proof by induction.

Second proof, using prime factorization:
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It is convenient to use the complete (countably infinite, ordered) list of primes P = {2, 3, 5, 7, . . .} =
{p1, p2, . . .} and then write, for each i,

ai = pmi1
1 pmi2

2 · · · ,

where mij = 0 for all but finitely many values of j (which depend on the prime factorization of ai).
But then

lcm(a1, . . . , an) = p
max(m11,...,mn1)
1 p

max(m12,...,mn2)
2 · · ·

and the formula lcm(a1, . . . , an−1, an) = lcm(lcm(a1, . . . , an−1), an) follows from the fact that

max(m1, . . . ,mn−1,mn) = max(max(m1, . . . ,mn−1),mn).

2

3. (i) Suppose that a+ 3b and 17a− b are relatively prime. Must a and b be relatively prime?

(ii) Suppose that a and b are relatively prime. Must a+ 3b and 17a− b be relatively prime?

Solution: (i) Yes. Any common divisor of a and b also divides both a+ 3b and 17a− b.
(ii) No. For a counterexample, let a = 1 and b = 1. Then a and b are relatively prime, but a+ 3b = 4
and 17a− b = 16 share the common divisor 4. 2

4. Let a = 123 456 and b = 78 901.

(i) Find the greatest common divisor d of a, b.

(ii) Find integers s and t such that sa+ tb = d.

Solution: Use Octave. Its built-in gcd() performs the extended Euclid algorithm with the call
[d,s,t]=gcd(a,b), returning values satisfying sa+ tb = d.

(i) gcd(123456,78901) gives ans = 1 by Euclid’s algorithm.

(ii) [d,s,t]=gcd(123456,78901) gives d = 1, s = -1082, t = 1693 by the extended Euclidean al-
gorithm. 2

5. (i) Is there an integer x such that 85x− 1 is divisible by 2023? Find it, or prove that none exists.

(ii) Is there an integer y such that 58y − 1 is divisible by 2023? Find it, or prove that none exists.

Solution: Use Octave. Its built-in gcd() performs the extended Euclid algorithm with the call
[d,x,y]=gcd(a,b), returning values satisfying xa+ yb = d.

(i) By Lemma 1.9, no such integer exists, since 85 = 5 · 17 and 2023 = 7 · 172 are not relatively prime:
gcd(85, 2023) = 17 6= 1.

(ii) Yes, such a y exists by Lemma 1.9 since 58 = 2 · 29 and 2023 = 7 · 172 are relatively prime:
gcd(58, 2023) = 1.

Use the extended Euclid algorithm to find y = 872: 872 · 58− 1 = 50 575 = 25 · 2023. 2

6. (i) Express the integer 1011 1010 1100 (base 10) in hexadecimal.

(ii) Find the rational number represented by the repeating hexadecimal expansion 0.CAFE (base 16).

Solution:
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(i) 1011 1010 1100 (base 10) equals 178AA1B46C (base 16). Find it using the Octave command
dec2hex(101110101100) on a contemporary 64-bit computer.

This calculation can be also be done on a 32-bit computer after the observation

101110101100 = 394961332× 256 + 108 = 394961332× 162 + 108.

But 394961332 (base 10) = 178AA1B4 (base 16) gives the leading hexadecimal digits, while 108 (base
10) = 6C (base 16) gives the two lowest-order hexadecimal digits. These last two calculations only
need 32-bit integers.

(ii) Let x = 0.CAFE (base 16) denote the number. Then

164x− x = CAFE (base 16) = 12× 163 + 10× 162 + 15× 16 + 14 = 51966

(This may also be found using Octave command hex2dec("CAFE").) Solving gives x = 51966/65535 ≈
0.7929503318837262 2

7. Prove that if p is a prime number, then
√
p is not a rational number.

Solution: If
√
p were a rational number, we could write

√
p = a/b in lowest terms, namely using

relatively prime a, b ∈ Z. But then pb2 = a2, so p divides a2. By Lemma 1.3, p divides a, so we can
write a = pa0 with a0 ∈ Z. But then p = ppa20/b

2, so b2 = pa20 and consequently p divides b2. Again
by Lemma 1.3, p divides b. Hence a, b share the common divisor p > 1, contradicting the hypothesis
that they are relatively prime. 2

8. What is the smallest positive subnormal number in IEEE double precision 64-bit binary floating-point
format?

Solution: The exponent of a subnormal number is −1022, although it is tagged with an unbiased
exponent of −1023. Use −1022 with a mantissa full of 51 leading zeros and a single one in the least
significant bit to get the smallest subnormal number:

0.00000 00000 . . . 01 (base 2)× 2−1022 = 2−1074 ≈ 4.9406× 10−324.

Note that only the first mantissa is written in base 2; all other expansions are decimal. 2

9. Implement the Miller-Rabin primality test for odd N satisfying 2 < N < 341 550 071 728 321. Use it
to find a 14-digit prime that is not known to Google. (Hint: you may seek and use an implementation
available on the web.)

Solution: The stated limits on N imply that no strong liars exist for the Miller-Rabin test. Func-
tion NextPrime[49332378234519] found online at Wolfram Alpha implements it and gives the result
49332378234571. Here the “random” input 49332378234519 is an arbitrary 14 digit number that hap-
pens to give a prime which does not appear in a Google search.

NOTE: a previous model solution set from 2014 contains this prime and is discoverable by a Google
search, so you must find another. 2

10. Using the primes p = 17 and q = 19, implement the RSA encryption algorithm with e = 23 and
modulus M = pq = 323. Namely, find d and φ(M). Then encode the cleartext value 314 and decode
the cyphertext value 255. Check your results by decrypting the cyphertext and encrypting the cleartext.
(Hint: search the web for RSA MATLAB.)

Solution: First compute φ(M) = (17−1)(19−1) = 288 and find the quasi-inverse with the extended
Euclid algorithm:
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p=17, q=19, en=23, M=p*q, phiM=(p-1)*(q-1)

[c,x,y]=gcd(en,phiM) % then c=x*en+y*phiM, so x*en=c (mod phiM)

This gives the quasi-inverse x = −25 which must be shifted into the range [1, φ(M) − 1] by adding
φ(M), giving d = 263. Use the MathWorks modular exponentiation function crypt(a,e,M) function
to get cyphertext crypt(314,23,323)==117 from cleartext 314. Likewise, crypt(255,263,323) gives
the cleartext 221 from cyphertext 255. Check by applying the inverses: crypt(117,263,323)==314,
crypt(221,23,323)==255. 2

5


