Ma 450: Mathematics for Multimedia

Solution: to Homework Assignment 2

Prof. Wickerhauser

Due Sunday, February 19th, 2023

1. Let N be a fixed positive integer.
(a) How many vertices are there in the unit cube in Euclidean N-space?
(b) Fix a vertex in the N-cube. How may other vertices are connected to it by single edges?
(c) Use parts a and b to count the total number of edges in the N-cube.

Solution: (a) There are 2^{N} vertices, representable by all distinct $\{0,1\}$ sequences of length N.
(b) Imagine aligning the N-cube with the coordinate axes in Euclidean N-space in such a way that the chosen vertex is at the origin and the edges at that vertex lie in the positive rays of the N coordinate axes. The vertices connected to the origin by single edges will then lie at coordinate 1 in each of the N directions, so there will be exactly N of them.
(c) From part a, there are 2^{N} vertices. From part b, each of these 2^{N} vertices shares an edge with N others. Summing over the vertices counts each edge twice, so the number of edges is $N 2^{N-1}$.
2. Let $\mathbf{P}, \mathbf{Q}, \mathbf{S}$ be subspaces of \mathbf{R}^{N} with respective dimensions p, q, s. Suppose that $\mathbf{S}=\mathbf{P}+\mathbf{Q}$.
(a) Prove that $\max \{p, q\} \leq s \leq p+q$.
(b) Find an example that achieves the equality $s=\max \{p, q\}$.
(c) Find an example that achieves the equality $s=p+q$.

Solution:

(a) Let $\mathbf{P}=\operatorname{span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ and $\mathbf{Q}=\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{q}\right\}$ define bases. Then $\mathbf{S}=\mathbf{P}+\mathbf{Q}=$ $\operatorname{span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p} ; \mathbf{v}_{1}, \ldots, \mathbf{v}_{q}\right\}$, so by Theorem 2.2 the dimension of \mathbf{S} is at most $p+q$.
Vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{p} \subset P \subset S$ are linearly independent, so the dimension of \mathbf{S} is at least p. Similarly, $s \geq q$. Thus $s \geq \max \{p, q\}$.
(b) Use \mathbf{R}^{3} with $\mathbf{P}=\operatorname{span}\left\{\mathbf{e}_{1}\right\}$ and $\mathbf{Q}=\operatorname{span}\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$.
(c) Use \mathbf{R}^{2} with $\mathbf{P}=\operatorname{span}\left\{\mathbf{e}_{1}\right\}$ and $\mathbf{Q}=\operatorname{span}\left\{\mathbf{e}_{2}\right\}$.
3. Prove Inequality 2.15 for every N.

Solution: Fix N and let $\mathbf{x} \in \mathbf{C}^{N}$ be any vector. Then $|x(k)| \leq \max \{|x(i)|: i=1, \ldots, N\}=\|\mathbf{x}\|_{\infty}$ for each $k=1, \ldots, N$, so

$$
\|\mathbf{x}\|_{1}=|x(1)|+\cdots+|x(N)| \leq N\|\mathbf{x}\|_{\infty}
$$

Also, $|x(k)| \geq 0$ for all $k=1, \ldots, N$, so

$$
\|\mathbf{x}\|_{1}=|x(1)|+\cdots+|x(N)| \geq \max \{|x(i)|: i=1, \ldots, N\}=\|\mathbf{x}\|_{\infty}
$$

proving the other inequality.
Since \mathbf{x} was arbitrary, the inequalites hold for all of \mathbf{R}^{N}. Since N was arbitrary, both equalities hold for any N.
4. Prove that $\|\mathbf{x}-\mathbf{y}\| \geq|\|\mathbf{x}\|-\|\mathbf{y}\||$ for any vectors \mathbf{x}, \mathbf{y} in a normed vector space \mathbf{X}.

Solution: Use the norm sublinearity axiom twice:

$$
\begin{aligned}
& \|\mathbf{x}\|=\|(\mathbf{x}-\mathbf{y})+\mathbf{y}\| \leq\|\mathbf{x}-\mathbf{y}\|+\|\mathbf{y}\| \quad \Rightarrow \quad\|\mathbf{x}-\mathbf{y}\| \geq\|\mathbf{x}\|-\|\mathbf{y}\| \\
& \|\mathbf{y}\|=\|(\mathbf{y}-\mathbf{x})+\mathbf{x}\| \leq\|\mathbf{y}-\mathbf{x}\|+\|\mathbf{x}\| \quad \Rightarrow \quad\|\mathbf{y}-\mathbf{x}\| \geq\|\mathbf{y}\|-\|\mathbf{x}\| .
\end{aligned}
$$

But $\|\mathbf{y}-\mathbf{x}\|=\|(-1)(\mathbf{x}-\mathbf{y})\|=|-1|\|\mathbf{x}-\mathbf{y}\|=\|\mathbf{x}-\mathbf{y}\|$, so the two inequalities may be combined:

$$
\|\mathbf{x}-\mathbf{y}\| \geq \max \{\|\mathbf{y}\|-\|\mathbf{x}\|,\|\mathbf{x}\|-\|\mathbf{y}\|\}=|\|\mathbf{x}\|-\|\mathbf{y}\||
$$

since $\max \{z,-z\}=|z|$ for any real number z.
5. Suppose that \mathbf{Y} is an m-dimensional subspace of an N-dimensional inner product space \mathbf{X}. Prove that \mathbf{Y}^{\perp} is at most $N-m$ dimensional.

Solution: \quad First check the trivial case: If $m=0$, then $\mathbf{Y}=\{\mathbf{0}\}$, so $\mathbf{Y}^{\perp}=\mathbf{X}$ is $N=N-0=N-m$ dimensional.
Otherwise, let $\mathbf{V}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$ be a basis for $\mathbf{Y}=\operatorname{span} \mathbf{V}$. Since \mathbf{Y}^{\perp} is a subspace of a finitedimensional space, it too is finite-dimensional, so let $\mathbf{W}=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right\}$ be its basis. The dimension of \mathbf{Y}^{\perp} is k, so it remains to show that $m+k \leq N$.
Now suppose $a_{1} \mathbf{v}_{1}+\cdots+a_{m} \mathbf{v}_{m}+b_{1} \mathbf{w}_{1}+\cdots+b_{k} \mathbf{w}_{k}=\mathbf{0}$. Then $a_{1} \mathbf{v}_{1}+\cdots+a_{m} \mathbf{v}_{m}=-\left(b_{1} \mathbf{w}_{1}+\cdots+b_{k} \mathbf{w}_{k}\right)$ belongs to both $\mathbf{Y}=\operatorname{span} \mathbf{V}$ and $\mathbf{Y}^{\perp}=\operatorname{span} \mathbf{W}$. But $\mathbf{Y} \cap \mathbf{Y}^{\perp}=\{\mathbf{0}\}$ by Lemma 2.5, so this implies $a_{1} \mathbf{v}_{1}+\cdots+a_{m} \mathbf{v}_{m}=\mathbf{0}$ and $b_{1} \mathbf{w}_{1}+\cdots+b_{k} \mathbf{w}_{k}=\mathbf{0}$. Thus $a_{1}=\cdots=a_{m}=0$ and $b_{1}=\cdots=b_{k}=0$ by the linear independence of sets \mathbf{V} and \mathbf{W} individually. This shows that $\mathbf{V} \cup \mathbf{W}$ is a linearly independent set in \mathbf{X}. There cannot be more than N linearly independent vectors in an N-dimensional vector space, so it follows that $m+k \leq N$.
6. Suppose that $\mathbf{Y}=\operatorname{span}\left\{\mathbf{y}_{n}: n=1, \ldots, N\right\}$ and $\mathbf{Z}=\operatorname{span}\left\{\mathbf{z}_{m}: m=1, \ldots, M\right\}$ are subspaces in an inner product space \mathbf{X}. Show that if $\left\langle\mathbf{y}_{n}, \mathbf{z}_{m}\right\rangle=0$ for all n, m, then $\mathbf{Y} \perp \mathbf{Z}$.

Solution: Let $\mathbf{y} \in \mathbf{Y}$ and $\mathbf{z} \in \mathbf{Z}$ be arbitrary and write $\mathbf{y}=\sum_{n=1}^{N} a_{n} \mathbf{y}_{n}$ and $\mathbf{z}=\sum_{m=1}^{M} b_{m} \mathbf{z}_{m}$ for appropriate scalars a_{1}, \ldots, a_{N} and b_{1}, \ldots, b_{M}. But then

$$
\begin{aligned}
\langle\mathbf{y}, \mathbf{z}\rangle & =\left\langle\sum_{n=1}^{N} a_{n} \mathbf{y}_{n}, \sum_{m=1}^{M} b_{m} \mathbf{z}_{m}\right\rangle \\
& =\sum_{n=1}^{N} \sum_{m=1}^{M} a_{n} b_{m}\left\langle\mathbf{y}_{n}, \mathbf{z}_{m}\right\rangle \quad=0
\end{aligned}
$$

since every term in the sum is zero by hypothesis.
7. Find an orthonormal basis for the subspace of \mathbf{E}^{4} spanned by the vectors $\mathbf{x}=(1,0,0,0), \mathbf{y}=(1,0,1,0)$, and $\mathbf{z}=(1,1,1,0)$.

Solution: First note that these three vectors are linearly independent: if $a \mathbf{x}+b \mathbf{y}+c \mathbf{z}=\mathbf{0}$, then $(a+b+c, c, b+c, 0)=(0,0,0,0)$, which implies $a=b=c=0$. Applying the recursive Gram-Schmidt construction gives the orthonormal set $\{\mathbf{p}, \mathbf{q}, \mathbf{r}\}$, where

$$
\begin{aligned}
\mathbf{p} & =\frac{1}{\|\mathbf{x}\|} \mathbf{x}=(1,0,0,0) \\
\mathbf{q}^{\prime} & =\mathbf{y}-\langle\mathbf{p}, \mathbf{y}\rangle \mathbf{p}=(0,0,1,0)=\mathbf{q} \\
\mathbf{r}^{\prime} & =\mathbf{z}-\langle\mathbf{p}, \mathbf{z}\rangle \mathbf{p}-\langle\mathbf{q}, \mathbf{z}\rangle \mathbf{q}=(0,1,0,0)=\mathbf{r}
\end{aligned}
$$

since both \mathbf{q}^{\prime} and \mathbf{r}^{\prime} happen to be unit vectors.
8. Find the biorthogonal dual of the basis $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$ of \mathbf{E}^{3}.

Solution: This may be solved by undetermined coefficients. Let $(a, b, c),(d, e, f)$, and (g, h, i) be the coordinates of the biorthogonal dual vectors. The biorthogonality conditions imply that $a=1$, $a+b=0, a+b+c=0 ; d=0, d+e=1, d+e+f=0 ; g=0, g+h=0, g+h+i=1$. Back substitution gives $b=-1, c=0 ; e=1, f=-1 ; h=0, i=1$. Hence the dual vectors are $(1,-1,0)$, $(0,1,-1)$, and $(0,0,1)$.
Alternatively, use matrix inversion:

```
Bt=[1,0,0; 1,1,0; 1,1,1]; inv(Bt) % Transpose Bt has the basis as its rows
ans =
\begin{tabular}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-0 & -1 & 1
\end{tabular}
```

The biorthogonal dual basis is found in the columns. Note that -0 equals 0 .
9. Confirm, by checking the necessary properties, that the inner product on Poly given by

$$
\langle p, q\rangle \stackrel{\text { def }}{=} \sum_{k} \bar{a}_{k} b_{k},
$$

is Hermitean symmetric, nondegenerate, and linear. Here $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, q(x)=$ $b_{0}+b_{1} x+\cdots+b_{m} x^{m}$, and the sum is over all nonzero terms $\bar{a}_{k} b_{k}$. Note that this inner product defines the derived norm in Equation 2.21.

Solution: Hermitean symmetry follows from the identity

$$
\overline{\left(\sum_{k} \bar{a}_{k} b_{k}\right)}=\sum_{k} a_{k} \bar{b}_{k}
$$

Nondegeneracy holds because for $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$,

$$
\langle p, p\rangle=0 \Rightarrow \sum_{k}\left|a_{k}\right|^{2}=0 \Rightarrow(\forall k=0,1, \ldots, n) a_{k}=0
$$

But this means that p is the zero polynomial.
Linearity holds because for polynomials $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, q(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m}$, $r(x)=c_{0}+c_{1} x+\cdots+c_{l} x^{l}$, and scalars s, t,

$$
\langle p, s q+t r\rangle=\sum_{k} \bar{a}_{k}\left(s b_{k}+t c_{k}\right)=s \sum_{k}\left(\bar{a}_{k} b_{k}\right)+t \sum_{k}\left(\bar{a}_{k} c_{k}\right) .
$$

This is evidently $s\langle p, q\rangle+t\langle p, r\rangle$.
10. Show that $\|T\|_{\text {op }}$ is infinite for $T:$ Poly \rightarrow Poly defined by $T p(x)=\frac{d}{d x} p(x)$ (the derivative), with respect to the norm in Equation 2.21.

Solution: Let $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$. Then $\operatorname{Tp}(x)=a_{1}+2 a_{2} x+\cdots+n a_{n} x^{n-1}$, so

$$
\|T p\|^{2}=\left|a_{1}\right|^{2}+2^{2}\left|a_{2}\right|^{2}+\cdots+n^{2}\left|a_{n}\right|^{2}
$$

whereas

$$
\|p\|^{2}=\left|a_{0}\right|^{2}+\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}+\cdots+\left|a_{n}\right|^{2}
$$

The ratio $\|T p\|^{2} /\|p\|^{2}=n$ for $p(x)=x^{n}$, and this is unbounded over Poly, which contains polynomials of arbitrarily large degree. Hence $\|T\|_{\mathrm{op}}=\infty$.
11. Suppose that A is an $N \times N$ matrix satisfying $A^{k}=I d$ for some integer $k>0$. Prove that $\|A\|_{\mathrm{HS}} \geq 1$.

Solution: A direct calculation with Equation 2.44 shows that $\|I d\|_{\mathrm{HS}}=\sqrt{N} \geq 1$. Thus for some $k>0$,

$$
1 \leq\|I d\|_{\mathrm{HS}}=\left\|A^{k}\right\|_{\mathrm{HS}} \leq\|A\|_{\mathrm{HS}}^{k}
$$

by the submultiplicativity of the Hilbert-Schmidt norm. Taking $k^{\text {th }}$ roots on both sides gives $1 \leq$ $\|A\|_{\text {HS }}$.
12. Can there be matrices $A, B \in \operatorname{Mat}(N \times N)$ satisfying $A B-B A=I d$?

Solution: No. Compare traces: $\operatorname{tr}(A B-B A)=0$ by Equation 2.46, while $\operatorname{tr}(I d)=N \neq 0$.
13. Determine whether the linear transformation $T: \ell^{2} \rightarrow \ell^{2}$ defined by

$$
T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1}, \frac{x_{2}+x_{3}}{2}, \frac{x_{4}+x_{5}+x_{6}}{3}, \ldots\right)
$$

is bounded or unbounded.
Solution: T is bounded. First note that for every integer $k>0$ and all scalars $x_{p+1}, x_{p+2}, \ldots, x_{p+k}$,

$$
\begin{aligned}
\left(\frac{x_{p+1}+\cdots+x_{p+k}}{k}\right)^{2} & =\frac{1}{k^{2}}\left|\left\langle(1, \ldots, 1),\left(x_{p+1}, \ldots, x_{p+k}\right)\right\rangle\right|^{2} \\
& \leq \frac{1}{k^{2}}\|(1, \ldots, 1)\|^{2}\left(\left|x_{p+1}\right|^{2}+\cdots+\left|x_{p+k}\right|^{2}\right) \\
& =\frac{1}{k}\left(\left|x_{p+1}\right|^{2}+\cdots+\left|x_{p+k}\right|^{2}\right)
\end{aligned}
$$

using the Cauchy-Schwarz inequality in \mathbf{E}^{k}. Thus

$$
\left\|T\left(x_{1}, x_{2}, \ldots\right)\right\|^{2} \leq\left|x_{1}\right|^{2}+\frac{1}{2}\left(\left|x_{2}\right|^{2}+\left|x_{3}\right|^{2}\right)+\frac{1}{3}\left(\left|x_{4}\right|^{2}+\left|x_{5}\right|^{2}+\left|x_{6}\right|^{2}\right)+\cdots \leq\|x\|^{2}
$$

Conclude that T is bounded with $\|T\|_{\mathrm{op}} \leq 1$.
Checking $x=(1,0,0, \ldots)$, we see that $\|T x\|=1=\|x\|$, so in fact $\|T\|_{\mathrm{op}}=1$.
14. Given a matrix $A=\left(\begin{array}{cc}x & y \\ z & w\end{array}\right)$, find a Givens rotation G such that $G A$ is upper triangular.

Solution: Write

$$
G=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

with θ to be determined in terms of x, y, z, w. If $G A$ is upper triangular, then its 2,1 coefficient must be zero:

$$
(-\sin \theta) x+(\cos \theta) z=0
$$

If $z=0$, then A is already upper triangular and it suffices to choose $\theta=0$, making $G=I d$ the trivial Givens rotation.
If $z \neq 0$, then $x / z=\cos \theta / \sin \theta=\cot \theta$ will make $G A$ upper triangular, so it suffices to choose $\theta=\cot ^{-1}(x / z)$.
15. Suppose that A and B are $N \times N$ matrices satisfying the condition $A(i, j)=B(i, j)=0$ if $i>j$. Prove that their product satisfies the same condition. (This shows that the product of upper-triangular matrices is upper-triangular.)

Solution: Their product $C=A B$ is $C(i, j)=\sum_{k=1}^{N} A(i, k) B(k, j)$. But $A(i, k) B(k, j)=0$ if $i>k$ or $k>j$, and one of these will be true for all $k \in\{1, \ldots, N\}$ if $i>j$. Thus $C(i, j)=0$ for $i>j$.

