
Ma 450: Mathematics for Multimedia

Solution: to Homework Assignment 2

Prof. Wickerhauser

Due Sunday, February 19th, 2023

1. Let N be a fixed positive integer.

(a) How many vertices are there in the unit cube in Euclidean N -space?

(b) Fix a vertex in the N -cube. How may other vertices are connected to it by single edges?

(c) Use parts a and b to count the total number of edges in the N -cube.

Solution: (a) There are 2N vertices, representable by all distinct {0, 1} sequences of length N .

(b) Imagine aligning the N -cube with the coordinate axes in Euclidean N -space in such a way that the
chosen vertex is at the origin and the edges at that vertex lie in the positive rays of the N coordinate
axes. The vertices connected to the origin by single edges will then lie at coordinate 1 in each of the
N directions, so there will be exactly N of them.

(c) From part a, there are 2N vertices. From part b, each of these 2N vertices shares an edge with N
others. Summing over the vertices counts each edge twice, so the number of edges is N2N−1. 2

2. Let P,Q,S be subspaces of RN with respective dimensions p, q, s. Suppose that S = P + Q.

(a) Prove that max{p, q} ≤ s ≤ p+ q.

(b) Find an example that achieves the equality s = max{p, q}.
(c) Find an example that achieves the equality s = p+ q.

Solution:

(a) Let P = span {u1, . . . ,up} and Q = span {v1, . . . ,vq} define bases. Then S = P + Q =
span {u1, . . . ,up;v1, . . . ,vq}, so by Theorem 2.2 the dimension of S is at most p+ q.

Vectors u1, . . . ,up ⊂ P ⊂ S are linearly independent, so the dimension of S is at least p. Similarly,
s ≥ q. Thus s ≥ max{p, q}.
(b) Use R3 with P = span {e1} and Q = span {e1, e2}.
(c) Use R2 with P = span {e1} and Q = span {e2}. 2

3. Prove Inequality 2.15 for every N .

Solution: Fix N and let x ∈ CN be any vector. Then |x(k)| ≤ max{|x(i)| : i = 1, . . . , N} = ‖x‖∞
for each k = 1, . . . , N , so

‖x‖1 = |x(1)|+ · · ·+ |x(N)| ≤ N‖x‖∞.
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Also, |x(k)| ≥ 0 for all k = 1, . . . , N , so

‖x‖1 = |x(1)|+ · · ·+ |x(N)| ≥ max{|x(i)| : i = 1, . . . , N} = ‖x‖∞,

proving the other inequality.

Since x was arbitrary, the inequalites hold for all of RN . Since N was arbitrary, both equalities hold
for any N . 2

4. Prove that ‖x− y‖ ≥
∣∣‖x‖ − ‖y‖∣∣ for any vectors x,y in a normed vector space X.

Solution: Use the norm sublinearity axiom twice:

‖x‖ = ‖(x− y) + y‖ ≤ ‖x− y‖+ ‖y‖ ⇒ ‖x− y‖ ≥ ‖x‖ − ‖y‖;
‖y‖ = ‖(y − x) + x‖ ≤ ‖y − x‖+ ‖x‖ ⇒ ‖y − x‖ ≥ ‖y‖ − ‖x‖.

But ‖y − x‖ = ‖(−1)(x− y)‖ = |−1|‖x− y‖ = ‖x− y‖, so the two inequalities may be combined:

‖x− y‖ ≥ max{‖y‖ − ‖x‖, ‖x‖ − ‖y‖} =
∣∣‖x‖ − ‖y‖∣∣,

since max{z,−z} = |z| for any real number z. 2

5. Suppose that Y is an m-dimensional subspace of an N -dimensional inner product space X. Prove that
Y⊥ is at most N −m dimensional.

Solution: First check the trivial case: If m = 0, then Y = {0}, so Y⊥ = X is N = N − 0 = N −m
dimensional.

Otherwise, let V = {v1, . . . ,vm} be a basis for Y = spanV. Since Y⊥ is a subspace of a finite-
dimensional space, it too is finite-dimensional, so let W = {w1, . . . ,wk} be its basis. The dimension
of Y⊥ is k, so it remains to show that m+ k ≤ N .

Now suppose a1v1+· · ·+amvm+b1w1+· · ·+bkwk = 0. Then a1v1+· · ·+amvm = −(b1w1+· · ·+bkwk)
belongs to both Y = spanV and Y⊥ = spanW. But Y ∩Y⊥ = {0} by Lemma 2.5, so this implies
a1v1 + · · ·+ amvm = 0 and b1w1 + · · ·+ bkwk = 0. Thus a1 = · · · = am = 0 and b1 = · · · = bk = 0 by
the linear independence of sets V and W individually. This shows that V∪W is a linearly independent
set in X. There cannot be more than N linearly independent vectors in an N -dimensional vector space,
so it follows that m+ k ≤ N . 2

6. Suppose that Y = span {yn : n = 1, . . . , N} and Z = span {zm : m = 1, . . . ,M} are subspaces in an
inner product space X. Show that if 〈yn, zm〉 = 0 for all n,m, then Y ⊥ Z.

Solution: Let y ∈ Y and z ∈ Z be arbitrary and write y =
∑N

n=1 anyn and z =
∑M

m=1 bmzm for
appropriate scalars a1, . . . , aN and b1, . . . , bM . But then

〈y, z〉 =

〈
N∑

n=1

anyn,

M∑
m=1

bmzm

〉

=

N∑
n=1

M∑
m=1

anbm 〈yn, zm〉 = 0,

since every term in the sum is zero by hypothesis. 2
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7. Find an orthonormal basis for the subspace of E4 spanned by the vectors x = (1, 0, 0, 0), y = (1, 0, 1, 0),
and z = (1, 1, 1, 0).

Solution: First note that these three vectors are linearly independent: if ax + by + cz = 0, then
(a+ b+ c, c, b+ c, 0) = (0, 0, 0, 0), which implies a = b = c = 0. Applying the recursive Gram-Schmidt
construction gives the orthonormal set {p,q, r}, where

p =
1

‖x‖
x = (1, 0, 0, 0) ;

q′ = y − 〈p,y〉p = (0, 0, 1, 0) = q;

r′ = z− 〈p, z〉p− 〈q, z〉q = (0, 1, 0, 0) = r,

since both q′ and r′ happen to be unit vectors. 2

8. Find the biorthogonal dual of the basis {

 1
0
0

 ,

 1
1
0

 ,

 1
1
1

} of E3.

Solution: This may be solved by undetermined coefficients. Let (a, b, c), (d, e, f), and (g, h, i) be
the coordinates of the biorthogonal dual vectors. The biorthogonality conditions imply that a = 1,
a + b = 0, a + b + c = 0; d = 0, d + e = 1, d + e + f = 0; g = 0, g + h = 0, g + h + i = 1. Back
substitution gives b = −1, c = 0; e = 1, f = −1; h = 0, i = 1. Hence the dual vectors are (1,−1, 0),
(0, 1,−1), and (0, 0, 1).

Alternatively, use matrix inversion:

Bt=[1,0,0; 1,1,0; 1,1,1]; inv(Bt) % Transpose Bt has the basis as its rows

ans =

1 0 0

-1 1 0

-0 -1 1

The biorthogonal dual basis is found in the columns. Note that −0 equals 0. 2

9. Confirm, by checking the necessary properties, that the inner product on Poly given by

〈p, q〉 def
=

∑
k

ākbk,

is Hermitean symmetric, nondegenerate, and linear. Here p(x) = a0 + a1x + · · · + anx
n, q(x) =

b0 + b1x+ · · ·+ bmx
m, and the sum is over all nonzero terms ākbk. Note that this inner product defines

the derived norm in Equation 2.21.

Solution: Hermitean symmetry follows from the identity(∑
k

ākbk

)
=
∑
k

ak b̄k.

Nondegeneracy holds because for p(x) = a0 + a1x+ · · ·+ anx
n,

〈p, p〉 = 0 ⇒
∑
k

|ak|2 = 0 ⇒ (∀k = 0, 1, . . . , n) ak = 0.
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But this means that p is the zero polynomial.

Linearity holds because for polynomials p(x) = a0 + a1x+ · · ·+ anx
n, q(x) = b0 + b1x+ · · ·+ bmx

m,
r(x) = c0 + c1x+ · · ·+ clx

l, and scalars s, t,

〈p, sq + tr〉 =
∑
k

āk(sbk + tck) = s
∑
k

(ākbk) + t
∑
k

(ākck) .

This is evidently s 〈p, q〉+ t 〈p, r〉. 2

10. Show that ‖T‖op is infinite for T : Poly → Poly defined by Tp(x) = d
dxp(x) (the derivative), with

respect to the norm in Equation 2.21.

Solution: Let p(x) = a0 + a1x+ · · ·+ anx
n. Then Tp(x) = a1 + 2a2x+ · · ·+ nanx

n−1, so

‖Tp‖2 = |a1|2 + 22|a2|2 + · · ·+ n2|an|2,

whereas
‖p‖2 = |a0|2 + |a1|2 + |a2|2 + · · ·+ |an|2.

The ratio ‖Tp‖2/‖p‖2 = n for p(x) = xn, and this is unbounded over Poly, which contains polynomials
of arbitrarily large degree. Hence ‖T‖op =∞. 2

11. Suppose that A is an N×N matrix satisfying Ak = Id for some integer k > 0. Prove that ‖A‖HS ≥ 1.

Solution: A direct calculation with Equation 2.44 shows that ‖Id‖HS =
√
N ≥ 1. Thus for some

k > 0,
1 ≤ ‖Id‖HS = ‖Ak‖HS ≤ ‖A‖kHS,

by the submultiplicativity of the Hilbert-Schmidt norm. Taking kth roots on both sides gives 1 ≤
‖A‖HS. 2

12. Can there be matrices A,B ∈Mat(N ×N) satisfying AB −BA = Id?

Solution: No. Compare traces: tr (AB −BA) = 0 by Equation 2.46, while tr (Id) = N 6= 0. 2

13. Determine whether the linear transformation T : `2 → `2 defined by

T (x1, x2, x3, . . .) = (x1,
x2 + x3

2
,
x4 + x5 + x6

3
, . . .)

is bounded or unbounded.

Solution: T is bounded. First note that for every integer k > 0 and all scalars xp+1, xp+2, . . . , xp+k,(
xp+1 + · · ·+ xp+k

k

)2

=
1

k2
|〈(1, . . . , 1), (xp+1, . . . , xp+k)〉|2

≤ 1

k2
‖(1, . . . , 1)‖2

(
|xp+1|2 + · · ·+ |xp+k|2

)
=

1

k

(
|xp+1|2 + · · ·+ |xp+k|2

)
,

using the Cauchy-Schwarz inequality in Ek. Thus

‖T (x1, x2, . . .)‖2 ≤ |x1|2 +
1

2
(|x2|2 + |x3|2) +

1

3
(|x4|2 + |x5|2 + |x6|2) + · · · ≤ ‖x‖2.

Conclude that T is bounded with ‖T‖op ≤ 1.

Checking x = (1, 0, 0, . . .), we see that ‖Tx‖ = 1 = ‖x‖, so in fact ‖T‖op = 1. 2
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14. Given a matrix A =

(
x y
z w

)
, find a Givens rotation G such that GA is upper triangular.

Solution: Write

G =

(
cos θ sin θ
− sin θ cos θ

)
,

with θ to be determined in terms of x, y, z, w. If GA is upper triangular, then its 2, 1 coefficient must
be zero:

(− sin θ)x+ (cos θ)z = 0.

If z = 0, then A is already upper triangular and it suffices to choose θ = 0, making G = Id the trivial
Givens rotation.

If z 6= 0, then x/z = cos θ/ sin θ = cot θ will make GA upper triangular, so it suffices to choose
θ = cot−1(x/z). 2

15. Suppose that A and B are N ×N matrices satisfying the condition A(i, j) = B(i, j) = 0 if i > j. Prove
that their product satisfies the same condition. (This shows that the product of upper-triangular
matrices is upper-triangular.)

Solution: Their product C = AB is C(i, j) =
∑N

k=1A(i, k)B(k, j). But A(i, k)B(k, j) = 0 if i > k
or k > j, and one of these will be true for all k ∈ {1, . . . , N} if i > j. Thus C(i, j) = 0 for i > j. 2
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