
Ma 450: Mathematics for Multimedia

Solution: to Homework Assignment 4

Prof. Wickerhauser

Due Sunday, April 2nd, 2023

1. Fix h > 0. Given y−, y+, let p = p(x) be the Lagrange polynomial through the points (−h, y−), (0, 0),
and (h, y+).

(a) [6 points] Find a formula for the value y = p(x) in terms of h, x, y−, and y+.

(b) [4 points] Find p′′(0) from the formula in part (a).

Solution:

(a) Any method will work since the Lagrange polynomial is unique. It is most easily done with
undetermined coefficients, using p(x) = ax2 + bx + c and noting that p(0) = 0 implies that c = 0:

y− = p(−h) = ah2 − bh, y+ = p(h) = ah2 + bh,

so

b =
y+ − y−

2h
, a =

y+ + y−
2h2

.

The Lagrange polynomial is therefore

p(x) =
y+ + y−

2h2
x2 +

y+ − y−
2h

x.

(b) The second derivative of p with respect to x is in fact independent of x, so in particular its value
at x = 0 is

d2

dx2
p(x) =

y+ + y−
h2

.
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2. [10 points] Let f(x) = x2 + 1 for x ∈ [−1, 1]. Find the expansion coefficients c0, c1, c2 for f in terms of
Chebyshev polynomials T0(x), T1(x), T2(x), namely

f(x) = c0T0(x) + c1T1(x) + c2T2(x).

Solution: Since f itself is a polynomial of degree 2, it equals its Chebyshev polynomial expansion:
f(x) = c0T0(x) + c1T1(x) + c2T2(x), for all x ∈ [−1, 1]. The expansion coefficients may thus be found
by the method of undetermined coefficients. But T0(x) = 1, T1(x) = x, and T2(x) = 2x2 − 1, so:

x2 + 1 = c0 · 1 + c1 · x + c2 · (2x2 − 1) = [2c2]x2 + [c1]x + [c0 − c2],

so c2 = 1
2 , c1 = 0, and c0 = 3

2 . 2
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3. Suppose x1 < x2, y1 < 0, and y2 > 0. Let f be the piecewise linear function interpolating the set
{(x1, y1), (x2, y2)}.
(a) [5 points] On what interval (if any) is f > 0?

(b) [5 points] On what interval (if any) is f < 0?

Solution: First use the point-slope formula through the points (x1, y1), (x2, y2) to find f(x) =
m[x − x1] + y1 by computing m = (y2 − y1)/(x2 − x1). Note that m > 0 since both y2 − y1 > 0 and
x2 − x1 > 0. Thus f is strictly increasing.

Use Equation 4.14 to find x0 = x2y1−x1y2

y1−y2
, the root of the linear function f = f(x). Since f is strictly

increasing, it must satisfy:

(a) f(t) < 0 for t ∈ (−∞, x0), and

(b) f(t) > 0 for t ∈ (x0,∞). 2

4. Suppose that we have a machine that, given a random number N of pennies, wraps them into bundles
of 50, keeping 0 to 49 leftover pennies as its commission, and gives back b(N) wrapped bundles. Let
50 ∗ b(N) be the estimate for the number of pennies N measured by this “instrument.”

(a) [5 points] What is the quantization error of this instrument?

(b) [5 points] What is the imprecision?

(c) [5 points] What is the inaccuracy?

(d) [5 points] Is this instrument calibrated?

Solution: (a) The quantization error is half the 50-penny difference between possible reported
values, or 25 pennies.

(b) The imprecision is the root mean square error of a uniform density on the interval [0, 49] with mean
value 24.5: √√√√ 1

50

49∑
p=0

(p− 24.5)2 =

√√√√ 2

50

24∑
p=0

(p− 24.5)2,

This may be evaluated with the Octave command

sqrt(var( 0:49, 1))

which gives the imprecision as
√

208.25 ≈ 14.43 pennies. (The second argument in var(0:49, 1)

specifies the option that the sum of N squares should be divided by N , not N − 1 as in the sample
variance.)

(c) The inaccuracy is the root mean square error between a uniform random variable taking integer
values in the interval [0, 49], and the measured value 0:√√√√ 1

50

49∑
p=0

(p− 0)2 =

√√√√ 1

50

49∑
p=1

p2.

But the sum of the squares of the integers 0, 1, 2, . . . , N−1 is 1
6N(N +1)(2N +1) by Equation 0.121(2)

on page 2 in Gradshteyn and Ryzhik’s Table of Integrals, Series, and Products, fifth edition (1994),
Academic Press, San Diego; ISBN 0-12-294755-X. This is 40425 for N = 50. Hence the inaccuracy is√

40425/50 =
√

808.5 ≈ 28.43 pennies.
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(d) Since the reported count is never more than the number of pennies but may be up to 49 pennies
too low, the expected ideal value is 24.5 pennies more than the reported value. Thus the counter is
not calibrated. 2

5. Let f(x) = cos(x) + 2 sin(x) for 0 ≤ x ≤ 10. Note that f ∈ L2([0, 10]).

Let xk = k and yk = f(xk) for k = 0, 1, . . . , 10 be an interpolation set.

Estimate the signal-to-noise ratio in decibels for the following sampling approximations s to f , using
Octave and a grid of evaluation points in [0, 10] with spacing 0.01:

(a) [10 points] The piecewise constant approximation using sampling function 1[− 1
2 ,

1
2 ]

.

(b) [10 points] The piecewise linear approximation using the hat function.

(c) [10 points] The cubic spline approximation (so s is the natural cubic spline defined by the interpo-
lation set).

Hint: Compute ‖f‖2, ‖s‖2, and ‖f−s‖2 as sums of squares at the evaluation points {0, 0.01, 0.02, . . . , 10}.

Solution: Octave commands are appropriate since an approximation suffices. These are modified
from the example file https://www.math.wustl.edu/~victor/classes/ma450/octave.txt.

f = @(x) cos(x)+2*sin(x); % signal

a=0; b=10; % Interval of interest is [a,b]

h = 0.01; % Fine spacing for plots and power computations

t=a:h:b; % Equispaced evaluation points in [a,b] spaced h apart

x=a:b; % Interpolation abscissas, every integer in [a,b]

y=f(x); % Interpolation ordinates for this signal

fsig = f(t); % Signal, at many points in [a,b]

fpwc = interp1(x,y,t,"nearest"); % Sampled pw constant on [k-1/2,k+1/2]

fpwl = interp1(x,y,t,"linear"); % Sampled pw linear on [k,k+1]

fcsp = interp1(x,y,t,"spline"); % Cubic spline interpolation, nodes k

% Signal to noise ratio, approximated using evaluation points in t

sigpow = norm(fsig); % square root of power

snrpwc = 20*log10(sigpow/norm(fsig-fpwc)) % (a) pw constant: 10.822

snrpwl = 20*log10(sigpow/norm(fsig-fpwl)) % (b) pw linear: 20.989

snrcsp = 20*log10(sigpow/norm(fsig-fcsp)) % (c) cubic spline: 40.461

2

6. [10 points] Let f(x) = cos(x) + 2 sin(x) for 0 ≤ x ≤ 10. Note that f ∈ L2([0, 10]).

Let s be the band-limited approximation to f with bandwidth 1, namely

s(x) =

10∑
n=0

f(n)sinc (x− n).

Estimate the signal-to-noise ratio in decibels for this approximation as in the previous problem,

Hint: Octave has a built-in sinc(). Use it in your own function for s, then compute ‖f‖2, ‖s‖2, and
‖f − s‖2 as sums of squares at the evaluation points {0, 0.01, 0.02, . . . , 10}.
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Solution: Use the Octave commands from the previous exercise and define the sampled bandlimited
approximation as follows:

fbl1 = 0*t; % initialize a vector of values for the bandlimited approximation

for (k=a:b) fbl1 = fbl1 + f(k)*sinc(t-k); end

snrbl1 = 20*log10(sigpow/norm(fsig-fbl1)) % bandlimited approx: 24.166

2

7. Let f = f(x, y) be the joint probability density supported on the region R = {(x, y) : 0 ≤ x ≤ 1, x−1 ≤
y ≤ x + 1} and defined by the formula f(x, y) = 1− |y − x| for (x, y) ∈ R, with f(x, y) = 0 elsewhere.

(a) [5 points] Show that
∫∫

R
f(x, y) dxdy = 1.

(b) [5 points] Compute the normalizing constant cx and determine f(y |x).

(c) [5 points] Compute the expectation E(y |x). Is d(x) = x an unbiased estimator?

(d) [5 points] Compute the risk R(d, y) for the decision function d(x) = x. Does it depend on y?

Solution: (a) The integral is the volume of the skewed prism under the graph of f , which has a
constant cross-sectional area 1 at each x, consisting of a triangle of height 1 and base 2. The volume is
that cross-sectional area times the length of the x-interval, which is also 1. (This proof uses a version
of the Theorem of Pappus.)

(b) Using Equation 4.38, compute

cx =

∫ ∞
−∞

f(x, y) dy =

∫ x+1

x−1
(1− |y − x|) dy = 1, 0 ≤ x ≤ 1,

which is independent of x since for every x the integrand is a hat function whose graph bounds an
isosceles triangle of base 2 and height 1. Thus

f(y |x) =
1

cx
f(x, y) =

{
1− |y − x|, if 0 ≤ x ≤ 1 and x− 1 ≤ y ≤ x + 1;
0, otherwise.

(c) Using the result from part b, compute the expectation

E(y |x) =

∫ ∞
−∞

yf(y |x) dy =

∫ x+1

x−1
y(1− |y − x|) dy =

∫ +1

−1
[x + u](1− |u|) du

= x

∫ +1

−1
(1− |u|) du +

∫ +1

−1
u(1− |u|) du = x + 0 = x.

The third step follows from the substitution u = y − x, so du = dy and y = x + u. At the fourth
step, the integral of u(1−|u|) on [−1, 1] vanishes by antisymmetry, and the integral of the hat function
1− |x| on [−1, 1] is 1 by the reasoning in part a. Thus E(y |x) = x, so the decision function d(x) = x
gives an unbiased estimator.

(d) Using Equation 4.43, compute

R2(d, y) =

∫ 1

0

|d(x)− y|2f(y |x) dy =

∫ x+1

x−1
|x− y|2(1− |y − x|) dy

=

∫ +1

−1
|u|2(1− |u|) du = 2

∫ 1

0

(u2 − u3) du =
1

6
.

The third step follows from the substitution u = x + y. The risk function R(d, y) = 1/
√

6 is evidently
independent of the ideal value y. 2
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