Ma 450: Mathematics for Multimedia Solution: to Homework Assignment 5

Prof. Wickerhauser

Due Sunday, April 16th, 2023

All solutions are worth 10 points.

1. Draw the graphs of $w(t), w(t / 2)$, and $w(3 t)$ on one set of axes for the Haar function $w(t)$ defined in Equation 5.2.

Solution: The graphs are shown in Figure 1.
2. Draw the graphs of $w\left(\frac{t}{3}-4\right)$ and $w\left(\frac{t-4}{3}\right)$ on one set of axes for the Haar function $w(t)$ defined in Equation 5.2.

Solution: The graphs are shown in Figure 2.
3. Let $f=f(\mathbf{a})=f(a, b)$ be the function on Aff defined by $f(\mathbf{a})=\mathbf{1}_{D}(\mathbf{a})$, where $\mathbf{1}_{D}$ is the indicator function of the region $D=\left\{\mathbf{a}=(a, b): A<a<A^{\prime}, B<b<B^{\prime}\right\} \subset$ Aff for $0<A<A^{\prime}$ and $-\infty<B<B^{\prime}<\infty$. Evaluate $\int_{\mathbf{A f f}} f(\mathbf{a}) d \mathbf{a}$ using the normalized left-invariant integral on Aff.

Figure 1: Graphs of $w(t), w(t / 2)$, and $w(3 t)$ for the Haar function w.

Figure 2: Graphs of $w\left(\frac{t}{3}-4\right)$ and $w\left(\frac{t-4}{3}\right)$ for the Haar function w.

Solution: Use the integral defined in Equation 5.19:

$$
\begin{aligned}
\int_{\mathrm{Aff}} f(\mathbf{a}) d \mathbf{a} & \stackrel{\text { def }}{=} \int_{b=-\infty}^{\infty} \int_{a=0}^{\infty} f(a, b) \frac{d a d b}{a^{2}}=\int_{b=B}^{B^{\prime}} \int_{a=A}^{A^{\prime}} \frac{1}{a^{2}} d a d b \\
& =\left(B^{\prime}-B\right) \int_{a=A}^{A^{\prime}} \frac{1}{a^{2}} d a=\left(B^{\prime}-B\right)\left(\frac{1}{A}-\frac{1}{A^{\prime}}\right) .
\end{aligned}
$$

4. Let $w=w(t)$ be the Haar mother function and define

$$
\phi_{M, K}^{J}(t) \stackrel{\text { def }}{=} \sum_{j=M+1}^{M+J} \frac{1}{2^{j}} w\left(\frac{t-K}{2^{j}}\right)
$$

for arbitrary fixed $K \in \mathbf{R}$ and $M, J \in \mathbf{Z}$ with $J>0$.
a. Show that

$$
\lim _{J \rightarrow \infty} \phi_{M, K}^{J}(t)=2^{-M} \mathbf{1}_{\left[K, K+2^{M}\right)}(t) \stackrel{\text { def }}{=} \phi_{M, K}(t),
$$

b. Show that $\left\langle\phi_{M, K}^{J}, u\right\rangle \rightarrow\left\langle\phi_{M, K}, u\right\rangle$ as $J \rightarrow \infty$ for any function $u \in L^{2}(\mathbf{R})$.
(Hint: use Equation 5.4 and Lemma 5.1.)

Solution:

a. Using ϕ^{J} as defined in Equation 5.4, evaluate

$$
\begin{aligned}
\phi_{M, K}^{J}(t) & =\sum_{j=M+1}^{M+J} \frac{1}{2^{j}} w\left(\frac{t-K}{2^{j}}\right)=\sum_{j=1}^{J} \frac{1}{2^{j+M}} w\left(\frac{t-K}{2^{j+M}}\right) \\
& =\frac{1}{2^{M}} \sum_{j=1}^{J} \frac{1}{2^{j}} w\left(\frac{1}{2^{j}} \frac{t-K}{2^{M}}\right)=\frac{1}{2^{M}} \phi^{J}\left(\frac{t-K}{2^{M}}\right) .
\end{aligned}
$$

Thus for all $t \in \mathbf{R}$,

$$
\lim _{J \rightarrow \infty} \phi_{M, K}^{J}(t)=\frac{1}{2^{M}} \lim _{J \rightarrow \infty} \phi^{J}\left(\frac{t-K}{2^{M}}\right)=\frac{1}{2^{M}} \mathbf{1}\left(\frac{t-K}{2^{M}}\right)=2^{-M} \mathbf{1}_{\left[K, K+2^{M}\right)}(t)
$$

b. Lemma 5.1 then gives

$$
\lim _{J \rightarrow \infty}\left\langle\phi_{M, K}^{J}, u\right\rangle=\frac{1}{2^{M}} \int_{-\infty}^{\infty} \mathbf{1}\left(\frac{t-K}{2^{M}}\right) u(t) d t=\frac{1}{2^{M}} \int_{K}^{K+2^{M}} u(t) d t=\left\langle\phi_{M, K}, u\right\rangle
$$

as claimed.
5. Compute $\|w\|$, where

$$
\mathcal{F} w(\xi)= \begin{cases}e^{-(\log \xi)^{2}}, & \text { if } \xi>0 \\ 0, & \text { if } \xi \leq 0\end{cases}
$$

(Hint: use Plancherel's theorem and Equation B. 6 in Appendix B.)
Solution: By Plancherel's theorem, $\|w\|=\|\mathcal{F} w\|$. Substitute $\xi \leftarrow e^{\eta+\frac{1}{4}}$ to compute

$$
\|\mathcal{F} w\|^{2}=\int_{\xi=0}^{\infty} e^{-2(\log \xi)^{2}} d \xi=\int_{\eta=-\infty}^{\infty} e^{-2\left(\eta+\frac{1}{4}\right)^{2}} e^{\eta+\frac{1}{4}} d \eta=e^{1 / 8} \int_{\eta=-\infty}^{\infty} e^{-2 \eta^{2}} d \eta .
$$

Finally, substitute $x \leftarrow \eta \sqrt{\frac{2}{\pi}}$ into Equation B.6, $\int_{-\infty}^{\infty} e^{-\pi x^{2}} d x=1$, to get $\int_{-\infty}^{\infty} e^{-2 \eta^{2}} d \eta=$ $\sqrt{\frac{\pi}{2}}$. Thus $\|w\|=\sqrt{\|\mathcal{F} w\|^{2}}=e^{1 / 16}\left(\frac{\pi}{2}\right)^{1 / 4} \approx 1.1917$.
NOTE: The norm may also be computed with Macsyma as follows:
sqrt(integrate $(\exp (-\log (x) * * 2) * * 2, x, 0$, inf $))$;
A numerical approximation may then be found using the float() command.
6. Let w be the function defined by

$$
\mathcal{F} w(\xi)= \begin{cases}e^{-(\log |\xi|)^{2}}, & \text { if } \xi \neq 0 \\ 0, & \text { if } \xi=0\end{cases}
$$

Show that w is admissible and compute its normalization constant c_{w}.
Solution: First note that $\mathcal{F} w(-\xi)=\mathcal{F} w(\xi)$, so $|\mathcal{F} w(-\xi)|^{2}=|\mathcal{F} w(\xi)|^{2}$. Thus if the $+\xi$ admissibility integral exists, then the $-\xi$ integral exists as well and has the same value.

Next, compute the $+\xi$ admissibility integral:

$$
c_{w}=\int_{0}^{\infty} \frac{|\mathcal{F} w(\xi)|^{2}}{\xi} d \xi=\int_{\xi=0}^{\infty} \frac{e^{-2(\log \xi)^{2}}}{\xi} d \xi=\int_{\eta=-\infty}^{\infty} \frac{e^{-2 \eta^{2}}}{e^{\eta}} e^{\eta} d \eta=\int_{\eta=-\infty}^{\infty} e^{-2 \eta^{2}} d \eta
$$

This follows from the substitution $\xi \leftarrow e^{\eta}$. Finally, substitute $x \leftarrow \eta \sqrt{\frac{2}{\pi}}$ into Equation B.6, $\int_{-\infty}^{\infty} e^{-\pi x^{2}} d x=1$, to get $c_{w}=\int_{-\infty}^{\infty} e^{-2 \eta^{2}} d \eta=\sqrt{\frac{\pi}{2}} \approx 1.2533$. Thus w is admissible. NOTE: This integral may also be computed with Macsyma:

```
integrate(exp(-log(x)**2)**2/x,x,0,inf);
```

A numerical approximation may then be found using the float() command.
7. Fix $A<0, B>0$, and $R>1$ and suppose that $w=w(x)$ is a function satisfying $\mathcal{F} w(\xi)=1$ if $R A<\xi<A$ or $B<\xi<R B$, with $\mathcal{F} w(\xi)=0$, otherwise.
a. Show that w satisfies the admissibility condition of Theorem 5.2, and compute the normalization constant c_{w}.
b. Give a formula for w.

Solution:

a. Plancherel's theorem guarantees that w belongs to $L^{2}(\mathbf{R})$, since $\|w\|=\|\mathcal{F} w\|=$ $\sqrt{(B-A)(R-1)}<\infty$.
Compute the two admissibility integrals:

$$
\begin{aligned}
\int_{0}^{\infty} \frac{|\mathcal{F} w(-\xi)|^{2}}{\xi} d \xi & =\int_{-A}^{-R A} \frac{1}{\xi} d \xi=\log (-R A)-\log (-A)=\log R \\
\int_{0}^{\infty} \frac{|\mathcal{F} w(\xi)|^{2}}{\xi} d \xi & =\int_{B}^{R B} \frac{1}{\xi} d \xi=\log (R B)-\log (B)=\log R
\end{aligned}
$$

These are finite and equal for $R>1$, so w is admissible with normalization constant $c_{w}=\log R$.
b. The inverse Fourier integral transform of $\mathcal{F} w$ gives the formula for w :

$$
w(x)=\int_{-\infty}^{\infty} e^{2 \pi i x \xi} \mathcal{F} w(\xi) d \xi=\int_{R A}^{A}+\int_{B}^{R B} e^{2 \pi i x \xi} d \xi=\frac{e^{2 \pi i x A}-e^{2 \pi i x R A}+e^{2 \pi i x R B}-e^{2 \pi i x B}}{2 \pi i x}
$$

Note that $w(0) \stackrel{\text { def }}{=}(B-A)(R-1)$ makes the function continuous, in fact smooth, by L'Hôpital's rule. Further simplification is not necessary.
8. Find a real-valued orthogonal low-pass CQF of length 4 satisfying the antisymmetry condition $h(0)=-h(3)$ and $h(1)=-h(2)$, or prove that none exist.

Solution: None exist. Antisymmetry would violate the normalization condition $h(0)+h(2)=\frac{1}{\sqrt{2}}=h(1)+h(3)$. Thus no antisymmetric real-valued orthogonal lowpass CQFs of length 4 exist.
9. Find a real-valued orthogonal low-pass CQF of length 4 satisfying the symmetry condition $h(0)=h(3)$ and $h(1)=h(2)$, or prove that none exist.

Solution: Only one exists and it is degenerate in that it only has 2 nonzero coefficients. Let h be an orthogonal CQF with nonzero real coefficients $h(0), h(1), h(2)$, and $h(3)$. Then h must be of the form

$$
h(0)=\frac{1-c}{\sqrt{2}\left(1+c^{2}\right)} ; \quad h(1)=\frac{1+c}{\sqrt{2}\left(1+c^{2}\right)} ; \quad h(2)=\frac{c(c+1)}{\sqrt{2}\left(1+c^{2}\right)} ; \quad h(3)=\frac{c(c-1)}{\sqrt{2}\left(1+c^{2}\right)},
$$

where c is some real number different from 0 and ± 1. The symmetry conditions imply $1-c=c(c-1)$ and $1+c=c(c+1)$, which implies $c^{2}=1$ and thus $c= \pm 1$. But $c=1$ leads to a filter of length 2, the Haar filter. The other choice $c=-1$ leads to the unique symmetric real-valued orthogonal CQF of length $4:\{1 / s q r t 2,0,0,1 / \sqrt{2}\}$.
10. Suppose that an orthogonal MRA has a scaling function ϕ satisfying $\phi(t)=0$ for $t \notin[a, b]$. Prove that the low-pass filter h for this MRA must satisfy $h(n)=0$ for all $n \notin[2 a-b, 2 b-a]$. (This makes explicit the finite support of h in Equation 5.36.)

Solution: If $\phi(t)=0$ for $t \notin[a, b]$, then $\phi(2 t-n)=0$ for $t \notin\left[\frac{a+n}{2}, \frac{b+n}{2}\right]$. Use the orthonormality of $\{\sqrt{2} \phi(2 t-k): k \in \mathbf{Z}\}$ in V_{-1} to compute

$$
\frac{1}{\sqrt{2}} h(n)=\left\langle\phi(2 t-n), \sum_{k} h(k) \sqrt{2} \phi(2 t-k)\right\rangle=\langle\phi(2 t-n), \phi(t)\rangle
$$

But the support intervals $\left[\frac{a+n}{2}, \frac{b+n}{2}\right]$ and $[a, b]$ of the two factors in the inner product will not overlap if $(a+n) / 2>b \Longleftrightarrow n>2 b-a$ or if $(b+n) / 2<a \Longleftrightarrow n<2 a-b$. Thus $h(n)=0$ if $n \notin[2 a-b, 2 b-a]$.
11. Suppose that $h=\{h(k): k \in \mathbf{Z}\}$ and $g=\{g(k): k \in \mathbf{Z}\}$ satisfy the orthogonal CQF conditions. Show that the 2-periodizations h_{2}, g_{2} of h and g are the Haar filters. Namely, show that $h_{2}(0)=h_{2}(1)=g_{2}(0)=-g_{2}(1)=1 / \sqrt{2}$.

Solution: Use the normalization conditions for h and g to evaluate the 2-periodization formula:

$$
\begin{array}{ll}
h_{2}(0)=\sum_{k} h(0+2 k)=1 / \sqrt{2} ; & h_{2}(1)=\sum_{k} h(1+2 k)=1 / \sqrt{2} \\
g_{2}(0)=\sum_{k} g(0+2 k)=1 / \sqrt{2} ; & g_{2}(1)=\sum_{k} g(1+2 k)=-1 / \sqrt{2} .
\end{array}
$$

Since h_{2} and g_{2} are 2-periodic, this determines all their values.
12. Let ϕ be the scaling function of an orthogonal MRA, and let ψ be the associated mother function. For $(x, y) \in \mathbf{R}^{2}$, define

$$
\begin{array}{ll}
e_{0}(x, y)=\phi(x) \phi(y), & e_{1}(x, y)=\phi(x) \psi(y) \\
e_{2}(x, y)=\psi(x) \phi(y), & e_{3}(x, y)=\psi(x) \psi(y)
\end{array}
$$

Prove that the functions $\left\{e_{n}: n=0,1,2,3\right\}$ are orthonormal in $L^{2}\left(\mathbf{R}^{2}\right)$, the inner product space of square-integrable functions on \mathbf{R}^{2}.

Solution: First note that ϕ and ψ are compactly supported, so $e_{0}, e_{1}, e_{2}, e_{3}$ vanish outside some closed and bounded rectangles in \mathbf{R}^{2}. Also, both ϕ and ψ are integrable and square-integrable as functions of one variable, so $e_{0}, e_{1}, e_{2}, e_{3}$ are integrable by iterating one-dimensional integrals. Write $e_{i}^{1}(x)$ for the x-dependent factor of $e_{i}(x, y)$ and $e_{i}^{2}(y)$ for the y-dependent factor of $e_{i}(x, y)$; then $e_{0}^{1}=e_{1}^{1}=e_{0}^{2}=e_{2}^{2}=\phi$, while $e_{2}^{1}=e_{3}^{1}=e_{1}^{2}=e_{3}^{2}=\psi$. Thus the inner products in $L^{2}\left(\mathbf{R}^{2}\right)$ are computable as follows:

$$
\begin{aligned}
\left\langle e_{i}, e_{j}\right\rangle & =\int_{\mathbf{R}^{2}} e_{i}(x, y) e_{j}(x, y) d x d y \\
& =\left(\int_{\mathbf{R}} e_{i}^{1}(x) e_{j}^{1}(x) d x\right)\left(\int_{\mathbf{R}} e_{i}^{2}(y) e_{j}^{2}(y) d y\right) \\
& =\left\langle e_{i}^{1}, e_{j}^{1}\right\rangle\left\langle e_{i}^{2}, e_{j}^{2}\right\rangle, \quad i, j \in\{0,1,2,3\} .
\end{aligned}
$$

But if $i \neq j$, then at least one of these inner products is $\langle\phi, \psi\rangle$ or $\langle\psi, \phi\rangle$, which are both zero since $\phi \perp \psi$. Hence $\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}$ is an orthogonal set in $L^{2}\left(\mathbf{R}^{2}\right)$.
On the other hand, if $i=j$, then the two inner products are both 1 since $\|\phi\|=\|\psi\|=$ 1. Hence $\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}$ is an orthonormal set in $L^{2}\left(\mathbf{R}^{2}\right)$.

