Ma 450: Mathematics for Multimedia

Solution: to Homework Assignment 5

Prof. Wickerhauser
Due Sunday, April 16th, 2023

All solutions are worth 10 points.

1.

Draw the graphs of w(t), w(t/2), and w(3t) on one set of axes for the Haar function
w(t) defined in Equation 5.2.

Solution:  The graphs are shown in Figure 1. a

. Draw the graphs of w(% —4) and w(‘5*) on one set of axes for the Haar function w(t)

defined in Equation 5.2.

Solution:  The graphs are shown in Figure 2. O

Let f = f(a) = f(a,b) be the function on Aff defined by f(a) = 1p(a), where 1p is
the indicator function of the region D = {a = (a,b) : A<a< A, B<b< B'} C Aff
for 0 < A < A and —o0 < B < B’ < 0o. Evaluate [,g f(a)da using the normalized
left-invariant integral on Aff.

w(31)

Figure 1: Graphs of w(t), w(t/2), and w(3t) for the Haar function w.
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Figure 2: Graphs of w(f —4) and w(5*) for the Haar function w.

Solution:  Use the integral defined in Equation 5.19:
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4. Let w = w(t) be the Haar mother function and define

M+J 1 t—K

J def

¢M,K(t) = Z 2jw< 9 >
j=M+1

for arbitrary fixed K € R and M, J € Z with J > 0.

a. Show that ot
lim Qﬁu((t) =2"M1g oy (1) = Pur(t),

J—o0

b. Show that <¢]‘{/1’K, u> — (Purrc, u) as J — oo for any function u € L*(R).
(Hint: use Equation 5.4 and Lemma 5.1.)

Solution:

a. Using ¢’ as defined in Equation 5.4, evaluate

M+J 1 t— K J 1 t— K
J
qu,K(t) = g 2jw< 5 ) = g 2j+Mw(2j+ )
j=M+1 Jj=1

1 L1 /1t—-K 1 ,t—K
= iiyu(yar) = o)



Thus for all t € R,

b. Lemma 5.1 then gives

. 1 o t—K 1 pE+2M
B ) =g [ o [ s~
as claimed. O

. Compute |Jw]|, where

0, if £ <0.
(Hint: use Plancherel’s theorem and Equation B.6 in Appendix B.)

—(log&)* .
]_-w(g):{e O if £ > 0;

Solution: By Plancherel’s theorem, ||w|| = || Fw||. Substitute £ < €74 to compute

2010 g+ g — (/8 /°° e dn.

n=—00

IFulf = [ je7ene" de =

= N=—00

Finally, substitute x « 77\/% into Equation B.6, [ e ™ dx = 1, to get 120 e 27 dn =

T Thus ||w|| = /|| Fwl||2 = /16 (Z 1/4%1.1917.
/5 lwll = /I Fwl ()

NOTE: The norm may also be computed with Macsyma as follows:
sqrt(integrate (exp(-log(x)**2)**2,x,0,inf)) ;

A numerical approximation may then be found using the float () command. a

. Let w be the function defined by

—(log[€))* .
CCEE FA S

Show that w is admissible and compute its normalization constant c,,,.

Solution:  First note that Fw(—¢) = Fw(&), so [Fw(—=¢)|? = |Fw(£)[*. Thus if the
+¢ admissibility integral exists, then the —¢ integral exists as well and has the same
value.



Next, compute the +£ admissibility integral:

00 2 00 (log§ e8] —2n° 00 9
Cow = / M d¢ = . d¢ = / € e dn = / e dn.
0 g 6: E n=—oo 677 n=—00

This follows from the substitution £ < €. Finally, substitute x < 77\/% into Equation
B.6, [*° e ™ dx = 1, to get ¢, = [ e 2" dny = \/g ~ 1.2533. Thus w is admissible.
NOTE: This integral may also be computed with Macsyma:

integrate (exp(-log(x)**2)**2/x,x,0,inf) ;

A numerical approximation may then be found using the float() command. 4

. Fix A <0, B>0,and R > 1 and suppose that w = w(z) is a function satisfying
Fw()=1if RA<{< Aor B<¢ < RB, with Fw(§) = 0, otherwise.

a. Show that w satisfies the admissibility condition of Theorem 5.2, and compute the
normalization constant c,,.

b. Give a formula for w.

Solution:
a. Plancherel’s theorem guarantees that w belongs to L?(R), since ||w| = || Fw]|| =
J(B=A)(R-1) < .

Compute the two admissibility integrals:

/wwdg — /RAldg log(—RA) —log(—A) = logR;
0 —A

§ £
RB 1
/ Fwl@F e _ Lde = log(RB) = log(B) = log .
0 £ B §
These are finite and equal for R > 1, so w is admissible with normalization constant
= log R.

b. The inverse Fourier integral transform of Fw gives the formula for w:

627riar:A _ 627riavRA + 627ria:RB . 62m':tB

w(x) = /_O:O ™ Fu(€) dé = /P: + /BRB e>mie8 ¢ =

def

2mx

Note that w(0) (B — A)(R — 1) makes the function continuous, in fact smooth, by
L’Hopital’s rule. Further simplification is not necessary. O
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10.

11.

Find a real-valued orthogonal low-pass CQF of length 4 satisfying the antisymmetry
condition h(0) = —h(3) and h(1) = —h(2), or prove that none exist.

Solution: None exist. Antisymmetry would violate the normalization condition
h(0) + h(2) = % = h(1) + A(3). Thus no antisymmetric real-valued orthogonal low-
pass CQF's of length 4 exist. a

Find a real-valued orthogonal low-pass CQF of length 4 satisfying the symmetry con-
dition h(0) = h(3) and h(1) = h(2), or prove that none exist.

Solution:  Only one exists and it is degenerate in that it only has 2 nonzero coef-
ficients. Let h be an orthogonal CQF with nonzero real coefficients h(0), h(1), h(2),
and h(3). Then h must be of the form

1—c¢ l+c h(2) — c(e+1) cle—1)

" =arey "W mare) " Aare " Bataey

where c is some real number different from 0 and +1. The symmetry conditions imply
1—c=c(c—1)and 1+ ¢ = c¢(c+ 1), which implies ¢* = 1 and thus ¢ = +1. But
¢ = 1 leads to a filter of length 2, the Haar filter. The other choice ¢ = —1 leads to the
unique symmetric real-valued orthogonal CQF of length 4: {1/sqrt2,0,0,1/v/2}. O

Suppose that an orthogonal MRA has a scaling function ¢ satisfying ¢(t) = 0 for
t ¢ [a,b]. Prove that the low-pass filter i for this MRA must satisfy h(n) = 0 for all
n & [2a — b,2b — a]. (This makes explicit the finite support of h in Equation 5.36.)

Solution:  If ¢(t) = 0 for ¢ ¢ [a,b], then ¢(2t —n) = 0 for ¢ ¢ {“;”, b;"} Use the
orthonormality of {v/26(2t — k) : k € Z} in V_; to compute

J0n) = (6021~ ), SIVRo(21— 1)) = (621~ ). 6(0).

But the support intervals {a;”, bg"} and [a, b] of the two factors in the inner product

will not overlap if (a+n)/2>b <= n>2b—aorif (b+n)/2<a <= n<2a—0b.
Thus h(n) =0if n ¢ [2a — b,2b — a. O

Suppose that h = {h(k) : k € Z} and g = {g(k) : k € Z} satisfy the orthogonal
CQF conditions. Show that the 2-periodizations hs, go of h and g are the Haar filters.
Namely, show that hy(0) = ha(1) = g2(0) = —go(1) = 1//2.



12.

Solution:  Use the normalization conditions for h and g to evaluate the 2-periodization
formula:

ha(0) = D h(0+2k) = 1/v2; ha(1) = Y- h(1+2k) = 1/V2;
92(0) = D 9(0+2k) = 1/V2 ga(1) = 3o g(1 +2k) = ~1/V2,

Since hy and g9 are 2-periodic, this determines all their values. a

Let ¢ be the scaling function of an orthogonal MRA, and let ¢ be the associated mother
function. For (x,y) € R?, define

eo(r,y) = ¢(x)d(y),  eilr,y) = ¢(x)Y(y)
ea(z,y) = V()d(y),  es(w,y) = v(x)P(y).

Prove that the functions {e, : n = 0,1,2,3} are orthonormal in L*(R?), the inner
product space of square-integrable functions on R2.

Solution:  First note that ¢ and ¢ are compactly supported, so eg, €1, €3, €3 vanish
outside some closed and bounded rectangles in R2. Also, both ¢ and ¢ are integrable
and square-integrable as functions of one variable, so ey, e, es, €3 are integrable by
iterating one-dimensional integrals. Write e} (z) for the z-dependent factor of e;(z,y)
and e?(y) for the y-dependent factor of e;(z,y); then ¢} = el = €2 = €2 = ¢, while

es = el = e} = e = 1. Thus the inner products in L?(R?) are computable as follows:

(eie5) = /RQez-(x,y)ej(fc,y)dxdy

_ 13,1 20 3,2

= ([ d@e@dr) ([ e d)

— <e},e;><e§,e§>, i,j €{0,1,2,3}.
But if ¢ # j, then at least one of these inner products is (¢,1) or (¢, ¢), which are
both zero since ¢ L 1. Hence {eg, €1, €, 3} is an orthogonal set in L*(R?).

On the other hand, if i = j, then the two inner products are both 1 since ||¢|| = ||¢|| =
1. Hence {eg, €1, €2, €3} is an orthonormal set in L?(R?). O



