
Ma 450: Mathematics for Multimedia

Solution: to Homework Assignment 5

Prof. Wickerhauser

Due Sunday, April 16th, 2023

All solutions are worth 10 points.

1. Draw the graphs of w(t), w(t/2), and w(3t) on one set of axes for the Haar function
w(t) defined in Equation 5.2.

Solution: The graphs are shown in Figure 1. 2

2. Draw the graphs of w( t
3
− 4) and w( t−4

3
) on one set of axes for the Haar function w(t)

defined in Equation 5.2.

Solution: The graphs are shown in Figure 2. 2

3. Let f = f(a) = f(a, b) be the function on Aff defined by f(a) = 1D(a), where 1D is
the indicator function of the region D = {a = (a, b) : A < a < A′, B < b < B′} ⊂ Aff
for 0 < A < A′ and −∞ < B < B′ < ∞. Evaluate

∫
Aff f(a) da using the normalized

left-invariant integral on Aff.
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Figure 1: Graphs of w(t), w(t/2), and w(3t) for the Haar function w.
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Figure 2: Graphs of w( t
3
− 4) and w( t−4

3
) for the Haar function w.

Solution: Use the integral defined in Equation 5.19:∫
Aff

f(a) da
def
=

∫ ∞

b=−∞

∫ ∞

a=0
f(a, b)

dadb

a2
=

∫ B′

b=B

∫ A′

a=A

1

a2
dadb

= (B′ −B)
∫ A′

a=A

1

a2
da = (B′ −B)

(
1

A
− 1

A′

)
.

2

4. Let w = w(t) be the Haar mother function and define

ϕJ
M,K(t)

def
=

M+J∑
j=M+1

1

2j
w

(
t−K
2j

)

for arbitrary fixed K ∈ R and M,J ∈ Z with J > 0.

a. Show that
lim
J→∞

ϕJ
M,K(t) = 2−M1[K,K+2M )(t)

def
= ϕM,K(t),

b. Show that
〈
ϕJ
M,K , u

〉
→ ⟨ϕM,K , u⟩ as J →∞ for any function u ∈ L2(R).

(Hint: use Equation 5.4 and Lemma 5.1.)

Solution:

a. Using ϕJ as defined in Equation 5.4, evaluate

ϕJ
M,K(t) =

M+J∑
j=M+1

1

2j
w

(
t−K
2j

)
=

J∑
j=1

1

2j+M
w

(
t−K
2j+M

)

=
1

2M

J∑
j=1

1

2j
w

(
1

2j
t−K
2M

)
=

1

2M
ϕJ(

t−K
2M

).
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Thus for all t ∈ R,

lim
J→∞

ϕJ
M,K(t) =

1

2M
lim
J→∞

ϕJ(
t−K
2M

) =
1

2M
1(
t−K
2M

) = 2−M1[K,K+2M )(t).

b. Lemma 5.1 then gives

lim
J→∞

〈
ϕJ
M,K , u

〉
=

1

2M

∫ ∞

−∞
1(
t−K
2M

)u(t) dt =
1

2M

∫ K+2M

K
u(t) dt = ⟨ϕM,K , u⟩ ,

as claimed. 2

5. Compute ∥w∥, where

Fw(ξ) =
{
e−(log ξ)2 , if ξ > 0;
0, if ξ ≤ 0.

(Hint: use Plancherel’s theorem and Equation B.6 in Appendix B.)

Solution: By Plancherel’s theorem, ∥w∥ = ∥Fw∥. Substitute ξ ← eη+
1
4 to compute

∥Fw∥2 =
∫ ∞

ξ=0
e−2(log ξ)2 dξ =

∫ ∞

η=−∞
e−2(η+ 1

4
)2eη+

1
4 dη = e1/8

∫ ∞

η=−∞
e−2η2 dη.

Finally, substitute x← η
√

2
π
into Equation B.6,

∫∞
−∞ e−πx2

dx = 1, to get
∫∞
−∞ e−2η2 dη =√

π
2
. Thus ∥w∥ =

√
∥Fw∥2 = e1/16

(
π
2

)1/4
≈ 1.1917.

NOTE: The norm may also be computed with Macsyma as follows:

sqrt(integrate(exp(-log(x)**2)**2,x,0,inf));

A numerical approximation may then be found using the float() command. 2

6. Let w be the function defined by

Fw(ξ) =
{
e−(log |ξ|)2 , if ξ ̸= 0;
0, if ξ = 0.

Show that w is admissible and compute its normalization constant cw.

Solution: First note that Fw(−ξ) = Fw(ξ), so |Fw(−ξ)|2 = |Fw(ξ)|2. Thus if the
+ξ admissibility integral exists, then the −ξ integral exists as well and has the same
value.
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Next, compute the +ξ admissibility integral:

cw =
∫ ∞

0

|Fw(ξ)|2

ξ
dξ =

∫ ∞

ξ=0

e−2(log ξ)2

ξ
dξ =

∫ ∞

η=−∞

e−2η2

eη
eη dη =

∫ ∞

η=−∞
e−2η2 dη.

This follows from the substitution ξ ← eη. Finally, substitute x← η
√

2
π
into Equation

B.6,
∫∞
−∞ e−πx2

dx = 1, to get cw =
∫∞
−∞ e−2η2 dη =

√
π
2
≈ 1.2533. Thus w is admissible.

NOTE: This integral may also be computed with Macsyma:

integrate(exp(-log(x)**2)**2/x,x,0,inf);

A numerical approximation may then be found using the float() command. 2

7. Fix A < 0, B > 0, and R > 1 and suppose that w = w(x) is a function satisfying
Fw(ξ) = 1 if RA < ξ < A or B < ξ < RB, with Fw(ξ) = 0, otherwise.

a. Show that w satisfies the admissibility condition of Theorem 5.2, and compute the
normalization constant cw.

b. Give a formula for w.

Solution:

a. Plancherel’s theorem guarantees that w belongs to L2(R), since ∥w∥ = ∥Fw∥ =√
(B − A)(R− 1) <∞.

Compute the two admissibility integrals:

∫ ∞

0

|Fw(−ξ)|2

ξ
dξ =

∫ −RA

−A

1

ξ
dξ = log(−RA)− log(−A) = logR;∫ ∞

0

|Fw(ξ)|2

ξ
dξ =

∫ RB

B

1

ξ
dξ = log(RB)− log(B) = logR.

These are finite and equal for R > 1, so w is admissible with normalization constant
cw = logR.

b. The inverse Fourier integral transform of Fw gives the formula for w:

w(x) =
∫ ∞

−∞
e2πixξFw(ξ) dξ =

∫ A

RA
+

∫ RB

B
e2πixξ dξ =

e2πixA − e2πixRA + e2πixRB − e2πixB

2πix
.

Note that w(0)
def
= (B−A)(R− 1) makes the function continuous, in fact smooth, by

L’Hôpital’s rule. Further simplification is not necessary. 2
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8. Find a real-valued orthogonal low-pass CQF of length 4 satisfying the antisymmetry
condition h(0) = −h(3) and h(1) = −h(2), or prove that none exist.

Solution: None exist. Antisymmetry would violate the normalization condition
h(0) + h(2) = 1√

2
= h(1) + h(3). Thus no antisymmetric real-valued orthogonal low-

pass CQFs of length 4 exist. 2

9. Find a real-valued orthogonal low-pass CQF of length 4 satisfying the symmetry con-
dition h(0) = h(3) and h(1) = h(2), or prove that none exist.

Solution: Only one exists and it is degenerate in that it only has 2 nonzero coef-
ficients. Let h be an orthogonal CQF with nonzero real coefficients h(0), h(1), h(2),
and h(3). Then h must be of the form

h(0) =
1− c√
2(1 + c2)

; h(1) =
1 + c√
2(1 + c2)

; h(2) =
c(c+ 1)√
2(1 + c2)

; h(3) =
c(c− 1)√
2(1 + c2)

,

where c is some real number different from 0 and ±1. The symmetry conditions imply
1 − c = c(c − 1) and 1 + c = c(c + 1), which implies c2 = 1 and thus c = ±1. But
c = 1 leads to a filter of length 2, the Haar filter. The other choice c = −1 leads to the
unique symmetric real-valued orthogonal CQF of length 4: {1/sqrt2, 0, 0, 1/

√
2}. 2

10. Suppose that an orthogonal MRA has a scaling function ϕ satisfying ϕ(t) = 0 for
t /∈ [a, b]. Prove that the low-pass filter h for this MRA must satisfy h(n) = 0 for all
n /∈ [2a− b, 2b− a]. (This makes explicit the finite support of h in Equation 5.36.)

Solution: If ϕ(t) = 0 for t /∈ [a, b], then ϕ(2t − n) = 0 for t /∈
[
a+n
2
, b+n

2

]
. Use the

orthonormality of {
√
2ϕ(2t− k) : k ∈ Z} in V−1 to compute

1√
2
h(n) =

〈
ϕ(2t− n),

∑
k

h(k)
√
2ϕ(2t− k)

〉
= ⟨ϕ(2t− n), ϕ(t)⟩ .

But the support intervals
[
a+n
2
, b+n

2

]
and [a, b] of the two factors in the inner product

will not overlap if (a+ n)/2 > b ⇐⇒ n > 2b− a or if (b+ n)/2 < a ⇐⇒ n < 2a− b.
Thus h(n) = 0 if n /∈ [2a− b, 2b− a]. 2

11. Suppose that h = {h(k) : k ∈ Z} and g = {g(k) : k ∈ Z} satisfy the orthogonal
CQF conditions. Show that the 2-periodizations h2, g2 of h and g are the Haar filters.
Namely, show that h2(0) = h2(1) = g2(0) = −g2(1) = 1/

√
2.
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Solution: Use the normalization conditions for h and g to evaluate the 2-periodization
formula:

h2(0) =
∑
k

h(0 + 2k) = 1/
√
2; h2(1) =

∑
k

h(1 + 2k) = 1/
√
2;

g2(0) =
∑
k

g(0 + 2k) = 1/
√
2; g2(1) =

∑
k

g(1 + 2k) = −1/
√
2.

Since h2 and g2 are 2-periodic, this determines all their values. 2

12. Let ϕ be the scaling function of an orthogonal MRA, and let ψ be the associated mother
function. For (x, y) ∈ R2, define

e0(x, y) = ϕ(x)ϕ(y), e1(x, y) = ϕ(x)ψ(y)

e2(x, y) = ψ(x)ϕ(y), e3(x, y) = ψ(x)ψ(y).

Prove that the functions {en : n = 0, 1, 2, 3} are orthonormal in L2(R2), the inner
product space of square-integrable functions on R2.

Solution: First note that ϕ and ψ are compactly supported, so e0, e1, e2, e3 vanish
outside some closed and bounded rectangles in R2. Also, both ϕ and ψ are integrable
and square-integrable as functions of one variable, so e0, e1, e2, e3 are integrable by
iterating one-dimensional integrals. Write e1i (x) for the x-dependent factor of ei(x, y)
and e2i (y) for the y-dependent factor of ei(x, y); then e10 = e11 = e20 = e22 = ϕ, while
e12 = e13 = e21 = e23 = ψ. Thus the inner products in L2(R2) are computable as follows:

⟨ei, ej⟩ =
∫
R2
ei(x, y)ej(x, y) dxdy

=
(∫

R
e1i (x)e

1
j(x) dx

)(∫
R
e2i (y)e

2
j(y) dy

)
=

〈
e1i , e

1
j

〉 〈
e2i , e

2
j

〉
, i, j ∈ {0, 1, 2, 3}.

But if i ̸= j, then at least one of these inner products is ⟨ϕ, ψ⟩ or ⟨ψ, ϕ⟩, which are
both zero since ϕ ⊥ ψ. Hence {e0, e1, e2, e3} is an orthogonal set in L2(R2).

On the other hand, if i = j, then the two inner products are both 1 since ∥ϕ∥ = ∥ψ∥ =
1. Hence {e0, e1, e2, e3} is an orthonormal set in L2(R2). 2
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