Ma 541: Topics in Applied Mathematics: Wavelet Algorithms Homework Assignment 1

Prof. Wickerhauser

Due Friday, September 12th, 2008

1. Suppose that $B=\left\{e_{n}: n=1, \ldots, N\right\}$ and $B^{\prime}=\left\{e_{n}^{\prime}: n=1, \ldots, N^{\prime}\right\}$ are orthonormal bases for a Hilbert space H. Show that $N=N^{\prime}$.
2. Show that an orthonormal basis B for a Hilbert space H is a Schauder basis: two equal expansions

$$
x=\sum_{b \in B} c_{b} b=\sum_{b \in B} c_{b}^{\prime} b \in H,
$$

must have equal expansion coefficients $c_{b}^{\prime}=c_{b}$ for all $b \in B$. (Hint: use Parseval's formula.)
3. Let B be the Haar wavelet basis for $L^{2}([0,1])$. Write an R program to compute a specified expansion coefficients of a specified function $f:[0,1] \rightarrow \mathbf{R}$.
Use your program to compute the inner product $\left\langle w_{3,3}, f\right\rangle$ for $f(x)=\sin (8 \pi x)$.
4. Fix

$$
\theta(t) \stackrel{\text { def }}{=} \begin{cases}\frac{\pi}{4} \sin \left(\frac{3 t}{2}\right), & \text { if }-\frac{\pi}{3} \leq t \leq \frac{\pi}{3} ; \\ -\frac{\pi}{4}, & \text { if } t<-\frac{\pi}{3} ; \\ \frac{\pi}{4}, & \text { if } t>\frac{\pi}{3} .\end{cases}
$$

Note that θ has one continuous derivative on \mathbf{R}.
(a) Plot the modulus of $\mathcal{F} \psi(\xi)$ for the corresponding Yves Meyer wavelet ψ, on the interval $\xi \in[-10,10]$.
(b) Plot the Yves Meyer wavelet $\psi(x)$ on the interval $x \in[-10,10]$.
5. Plot the following discrete cosine transform function:

$$
\cos \left(\frac{\pi\left(m+\frac{1}{2}\right)\left(n+\frac{1}{2}\right)}{N}\right), \quad n=0,1, \ldots, N-1
$$

for $N=512$ and various values of $m \in\{0,1, \ldots, 511\}$.

