Ma 541: Topics in Applied Mathematics: Wavelet Algorithms Homework Assignment 2

Prof. Wickerhauser

Due Friday, October 3rd, 2008

1. Suppose that ϕ is the scaling function for an orthogonal MRA with two-scale equation

$$
\phi(t)=\sum_{k} h(k) \sqrt{2} \phi(2 t-k) .
$$

Fix an integer M and define $g(k) \stackrel{\text { def }}{=}(-1)^{k} \bar{h}(2 M+1-k)$. Show that
(a) $\quad \sum_{k \in \mathbf{Z}} \bar{g}(k+2 m) g(k+2 n)=\delta(m-n), \quad m, n \in \mathbf{Z} ;$
(b) $\quad \sum_{k \in \mathbf{Z}} \bar{g}(k+2 m) h(k+2 n)=0, \quad m, n \in \mathbf{Z}$;
(c) $\quad \sum_{k \in \mathbf{Z}}(\bar{g}(m+2 k) g(n+2 k)+\bar{h}(m+2 k) h(n+2 k))=\delta(m-n), \quad n, m \in \mathbf{Z} ;$
2. Suppose that h is the filter sequence for an orthogonal MRA. Let $[a, b] \subset \mathbf{Z}$ be the shortest interval satisfying $(k<a$ or $k>b)$ implies $h(k)=0$. Prove that $b-a$ must be odd. (Thus the support length $|[a, b]|=1+b-a$ of an orthogonal MRA filter must be even.)
3. Implement periodized convolution/decimation and its adjoint. Assume that the input signal has even integer period $2 M$ and that the filter sequence is supported in the index interval $[0,2 L-1]$ with $L \leq M$.
4. Prepare a table of coefficients for the first 5 Daubechies orthogonal wavelet filters, both h and g. Insure 24 digits of accuracy.
5. Plot the first 5 Daubechies orthogonal wavelets and scaling functions, sampled at 256 points within their support.

