256 APPENDIX A. ANSWERS

Second, note that if e and f are finitely-supported sequences with respective
P-periodizations ep and fp, then

P—1
> ep(K +2n) fp(k' +2m) =
k'=0

P-1
= > Y > el +2n+P) f(K +2m+iP)

k=0 j i
P-1

= > Y > el +jP+2n) f(K + P +2(m+1P")),
=0 j 1

after substituting ¢ « [4 j. The sums over 0 < k¥’ < P and j € Z combine
into a sum over all integers k € Z, and the [and k sums may be interchanged,
giving

P-1

> ep(W +2n) fp(k +2m) =Y Y e(k+2n) f(k+ 2(m +1P")).
l k

k'=0

If e = f = h and h is self-orthonormal, then the inner sum over k is d(n —
(m 4+ 1P’)). Thus the outer sum over [is dps(n — m), which is 1 if and only
if n =m (mod P’); otherwise it is zero. The same holds if e = f = g is
self-orthonormal. If e = h and f = g are independent, the inner sum over k is
always zero, so the total is zero. This establishes periodic independence and
self-orthonormality.

Finally,

P'—1
> frK +n) fp(2K +m) =
k'=0
P'—-1
=Y > f@K +n+jP) f2K +m+iP)
k=0 j i
P'—1

= YD > FRHE+P) +n) fK+5P') +m+ (i—j)P),
k=0 j

i

so substituting 7 < [+ j and k¥’ «+— k — jP’ and combining the k' and j
summations into one makes this

>N F@k+n) f(2k +m+1P).
k l

The [and k£ sums may be interchanged. The cases f < h and f < g give

P —1
> hp@k+n)hp(2k+m) = Y > h(2k+n)h(2k+m+LP);
k’=0 l k

A.5. ...TO CHAPTER 5 EXERCISES 257

P'—1
> gpk+n)gpk+m) = > g(2k+n)g(2k+m+IP).
k'=0 l k

If A and g satisfy the completeness condition, adding these together gives
> 0(n— (m+1P)) = dp(n —m), proving periodic completeness. O

17. Solution: The following is a Standard C implementation. We begin by
implementing the inverse filter transform:

Contents of ipcqfilt.c
int mod(int x, int M) { /* xyM for M>1 and any x */
if (x<0) x-= x*M; /* x-x*modulus>0 equals x mod M */
return x%M;
}
void ipcqfilter(float out[], const float in[], int q) {
int n2, k2;
for(k2=0; k2<q; k2++) {
out [2*xk2] =out [2¥k2+1]=0;
for(n2=0;n2<L/2;n2++) {
out [2xk2] += h[2#n2]*in[mod(k2-n2, q)];
out [2%k2] += g[2#n2]*in[mod(k2-n2, q) + ql;
out [2¥k2+1] += h[2#n2+1]*in[mod(k2-n2, q)];
out [2%¥k2+1] += g[2#n2+1]*in[mod(k2-n2, q) + ql;

Notice that these functions will work with filters of any even length L.

Next, we implement the inverse to Mallat’s periodic discrete wavelet transform
on N = 27K samples, generalizing ipdwt0():

Reconstruction from Mallat’s Periodic Wavelet Expansion
ipdwt(ull, N, J, h(l, gll, L):
[0] If J>0, then do [1-] to [4]
[1] Compute ipdwt(ull, N/2, J-1, h[], gll, L)
[2] Allocate temp[0]=0,...,temp[N-1]=0
(3] Compute ipcqfilter(templ], ull, N/2, h[], gl], L)
[4] For i=0 to N-1, let ul[i] = temp[i]

For practical reasons, we should place the allocation and deallocation of
temp[] as close as possible to the filter transform. This frees unneeded mem-
ory for the recursive function call. In Standard C, this becomes:

