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Third, we observe that another filter with similar orthogonality properties can
be defined from h:

g(k) = (=D n(1 = k), for all k € Z. (5.41)

Clearly, g will be finite whenever h is finite, and given g we may determine h by
the similar formula h(k) = (—=1)'"*g(1 — k). This and Equation 5.40 implies the
high-pass filter condition for g:

1
D k) == g2k+1)=— = gk)=0]). (5.42)
k k V2 k
Fourth, there is a self-orthonormality condition for g:
> gB)g(k+2n) = > (=1)Fh(1 = k)= h(1 =k — 2n)
k

k
- Zh(l —k)h(1 —k — 2n)

Zh h(k—2n) = d(n). (5.43)

Fifth, for any integer n, the following independence condition holds between the
two filters h and g:

Zg h(k+2n) = > (=1)*h(1 - k)h(k + 2n) (5.44)
k

> h(1—k)h(k+2n) = > h(1—k)h(k + 2n)

even k odd k
= > h(2p+1)h(2n—2p) — Y h(2n—2¢)h(2¢+1) = 0.

q

Here k <+ —2p in the first sum and k < 2¢ + 1 — 2n in the second.
Finally, the filter pair h, g satisfies the completeness condition:

> h(2k+n)h(2k +m) + > g(2k + n)g(2k + m) = 5(n — m). (5.45)
k k

This can be shown case-by-case. We first write ¢ in terms of h, making the sum

> 2k + n)h(2k +m) + (=)™ A2k +1 - n)h(2k + 1 — m).
k

Then we put p = m—mn to have n+m = 2n+p and (—1)"*" = (—1)?, and consider
the cases:

e If n = 2n/ is even, then substituting k « k—n’ in the first sum and k «— k+n’
in the second reduces them to

> " h(2k)h(2k + p) + Zh2k+1 h(2k + 1 —p).
k
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— If p = 2p’ is even, then substituting k < k + p’ in the second sum gives

> h(2E)h(2k+p) + Y h(2k+14p)h(2k + 1) = Z h(k)h(k+p)
k k

= S RBk+20) = 50) = d(n—m).
k

— If p = 2p' + 1 is odd, then substituting k < k + p’ in the second sum
gives

> h(2k)A(2k +p) = Y h(2k + p)h(2k) = 0.
k k

This agrees with the value of §(n — m), which is 0 in this case since
p =m — n being odd means n # m.

e If n = 2n’ + 1 is odd, then substituting k¥ <« k — n’ in the first sum and
k «— k +n’ in the second reduces them to

> h(2k+ Dh(2k+1+p) + Zh% h(2k — p).

— If p = 2p’ is even, then substituting k < k + p’ in the second sum gives

> h(2k+1)A(2k+14p) + Y h(2k +p)h(2k) = Zh h(k + p)
k k

= > h(k)h(k+2p)
k

5(p") = d(n—m).

— If p = 2p' — 1 is odd, then substituting k < k + p’ in the second sum
gives

> h(2k+1h(2k+1+p) = > h(2k+p+ Dh(2k+1) = 0.

This agrees with the value of d(n — m), which is 0 in this case since
p =m — n being odd means n # m.

The sequences h and g derived from the MRA are called orthogonal conjugate
quadrature filters, or orthogonal CQFs. We may abstract the properties just de-
duced from the MRA conditions:

Orthogonal CQF Conditions (Basic)
Finiteness: Sequence h = {h(k) : k € Z} consists of zeroes for all but
finitely many values of k.
Normalization of h: >, h(2k) = >, h(2k + 1) = 1/v/2, and thus
> hk) = V2.
Self-Orthonormality of h: ), h(k + 2n)h(k + 2m) = 6(n — m), for
every n,m € Z.
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From these stand-alone assumptions, the other properties of h and g can be deduced:
Orthogonal CQF Conditions (Derived)

Conjugacy: For some fixed integer M there is a finitely-supported se-
quence g = {g(k) : k € Z}, defined by g(k) = (=1)*h(2M — 1 — k)
for each k € Z.

Normalization of g: >, g(2k) = — >, g(2k + 1) = 1/4/2, and thus
>k 9(k) =0.

Self-Orthonormality of g: >, g(k + 2n)g(k + 2m) = §(n — m).

Independence: Y, g(k + 2n)h(k + 2m) = 0 for any n,m € Z.

Completeness: ), h(2k +n)h(2k +m) + >, g(2k +n)g(2k + m) =
d(n —m).

The so-called lazy filters, h(k) = v/23(k — 1) and g(k) = v/246(k) satisfy the
finiteness, conjugacy, self-orthonormality, independence and completeness condi-
tions, but only part of the normalization conditions. This partial example is a
useful test case for some constructions.

To be definite, suppose that for some fixed L > 0, h(k) =0if k < 0or k > L;
this may be called conventional indexing. Then the length of the finite support of h
is no more than L. If it is exactly L, namely if h(0) # 0 and h(L —1) # 0, then h is
said to have filter length L. The normalization condition implies that filter length
L is at least two. Orthogonality imposes an additional constraint:

Lemma 5.7 An orthogonal conjugate quadrature filter’s length must be even.

Proof: 1t is enough to prove this for the low-pass filter h, since the high-pass
conjugate filter g will have the same length L as h. If L = 2]+ 1 for [ > 0, then
L — 1 = 2] is the largest index k for which h(k) # 0, so

0= h(k)h(k +21) = h(0)h(2l) = h(0)h(L — 1).
k

Thus either h(0) = 0 or h(L — 1) = 0, contradicting the assumption that h has
length L. m|

Constructing orthogonal filter pairs

How can we construct a finite sequence h = {h(k) : k € Z} satisfying the orthogonal
CQF conditions?

One solution can be found right away, the Haar filter, which is the unique
orthogonal CQF of length two:

L ifk=0ork=1 7 k=0,
—_ = O =
h(k)_{ﬁ’ ! ' ’ gy =q -%, ifk=1, (5.46)

0, ifk¢{0,1}; 0 if k¢ {0,1}.



