5.2. DISCRETE WAVELET TRANSFORMS 157

H H H
Pou €2 s, >» S > S, Sy — > S
d; d, d,

Figure 5.5: The pyramid algorithm for the discrete wavelet transform (DWT).
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Figure 5.6: The pyramid algorithm for the inverse discrete wavelet transform
(iDWT).

di1(n) = Zg(k)sj(2n+k = Y glk—2n)s;(k); (5.59)
sj_1(n) = Zh (n—2k) s;(k) + Y _ g(n — 2k) d; (k). (5.60)
k

Equations 5.58 and 5.59 provide a recursive algorithm, the Mallat pyramid algo-
rithm depicted in Figure 5.5, for computing expansions in any of the subspaces
of the MRA. The finitely-supported sequence sg = {so(k) : k € Z}, defined by
so(k) = (é(t — k), u(t)), completely determines the approximation Pyu € V. The
wavelet expansion of Pou to level J > 0 consists of the sequences (d1,ds, ...,dy;$7).
Sequence s; determines the crude approximation Pyu € Vj, while dj, dy_1, and
so on contain extra information needed to refine it successively into the better
approximation Pyu € Vj.

Reconstruction from the wavelet expansion is done by a similar pyramid al-
gorithm, depicted in Figure 5.6. The arrows are reversed using adjoints, and the
results are summed according to Equation 5.60.

In both pyramid algorithms, sequences s1, s2,...,Ss—1 are computed along the
way, even though they are not part of the discrete wavelet expansion or the recon-
structed signal. Enough temporary storage to hold another copy of the signal may
therefore be needed, depending upon how the arrow operations are implemented.

Filter transforms

A finitely-supported sequence f = {f(k) : k € Z} defines a filter transform, acting
on arbitrary sequences u = {u(k) : k € Z} by either of the two equivalent formulas,
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related by the substitution k « k' + 2n:

Fu(n) = Z fk—2n)u(k) = Z F(Eu(k' + 2n), n e Z. (5.61)
k K’

This F' is a linear transformation on every vector space of complex-valued sequences,
including the inner product space ¢? of square-summable sequences with inner

product (u,v) = >, u(k)v(k). In that space, F' has an adjoint F'* that satisfies
(Fu,v) = (u, F*v) for all w and v. But then,

> Fum(n) = > <Z fk— 2n)u(k)> v(n)
n k

= Z(a(k)Zf(k—2n>v<n>> S alk)Frok),
k n k

which defines two equivalent formulas for the adjoint filter transform:

Fro(k) = Y f(k—2n)v(n) (5.62)
Y7 k 12 . .
Zf(?n’)v(i—n), if k € Z is even,
> @+ u(—= —n"), ifk€Zisodd.
These are related by the substitutions n « % —n/ if k is even, and n « k%l —n"

if k is odd.
Composing F' and its adjoint gives

F*Fu(j) =Y fn—j)Fu(n) = f(2n—j)f(2n — k)u(k). (5.63)

n,k

Similarly,

FFu(m) =Y f2m—k)F*u(k) =Y f2m—k)f2n—k)u(n).  (5.64)

k k,n

Because of the dilation by 2, F' typically shrinks the support of sequences, while
F* enlarges it:

Lemma 5.11 Suppose that the sequence f is supported on the index interval [a, b]:

f=4..,0,f(a), fla+1),...,f(b—=1), f(b),0,...}, since f(n) =0 ifn < a or

n > b. For any sequence u supported on [x,y],

x—b y—a

e Fu is supported on [[£52], | 452 ]];

o ™ is supported on [2x + a,2y + V).
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Proof: Taking into account the support, the second version of the filter transform
formula reduces to

b
Fu(n) =Y f(K)u(k + 2n). (5.65)
k'=a
Notice that the summand will be zero if b+ 2n < x or a + 2n > y. Only output
values at indices n € [2/,y'] need to be computed, where 2’ = [(x —b)/2] and
y' =y —a)/2].
On the other hand, the first version of the adjoint filter transform formula
reduces to

Fro(k) = 3 Tk —2n) v(n). (5.66)

The summand will be zero unless a < k —2n < b and x < n < y. Hence, output
values need only be computed at indices k € [z”,y"], where 2/ = 2z + a and
y"' =2y +b. O

Lemma 5.11 illuminates two kinds of spreading in support that occur with filter
transforms. Firstly, if F' is one filter from an orthogonal CQF pair, then F*F is an
orthogonal projection on £2, but the support of F* Fu may be greater than that of u.
If w is finitely-supported on the index interval [z, y], and f is supported on [a, b], then
F*Fu will be finitely supported in the index interval [2 PT_” +a,2 L”—;“J + b].
This contains [z — (b —a — 1),y + (b — a — 1)], which in turn contains [z,y] and is
strictly larger if and only if b — a > 1. The only orthogonal CQF with b —a <1 is
the Haar pair, with a = 0,b = 1 in the conventional indexing giving b —a = 1.

Secondly, a CQF pair H, G of filter transforms can produce more total output
values than there are input values. Suppose the supports are [a, b] for H and [c, d] for
G. For a finitely supported sequence u = {u(x),...,u(y)} of length N =1+y—=z,
the high-pass and low-pass parts of the signal will be supported on the intervals

HIT*Z’] , Lygaﬂ and Hx%d] , Lygcﬂ, respectively, with total length

ol D o [ ) o

The total support length will be greater than 1+ y — « if and only if b—a > 1 or
d —c > 1. The Haar CQF pair has b —a =1 and d — ¢ = 1, and is the only filter
pair that does not cause spreading of the support.

Successive applications of H and G give the (nonperiodic) discrete orthogonal
wavelet transform on finitely-supported infinite sequences. There are only finitely
many finitely-supported sequences dy,ds, .. .,d , and sy to compute, and each out-
put coefficient costs only a finite number of operations since h,g are both finite
sequences, say of length L. Since L must be even by Lemma 5.7, we can write
L = 2M for an integer M. If h is conventionally indexed, so that h(k) is nonzero
only for 0 < k < L, then we may choose?® to define g(k) = (—=1)*h(2M — 1 — k) to
insure that g(k) is also nonzero only for 0 < k < L.

3Work Exercise 12 to see why!
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With these indexing conventions, if s;(k) is supported in z < k < y, then
d;j+1(n) and sj11(n) may be nonzero for [(1 +xz — L)/2] <n < |y/2|. Hence, the
output sequences are of varying lengths:

Mallat’s Discrete Wavelet Transform
dwt( ull, x, y, J, hil, gll, L ):
[0] If J=0 then for n = x to y, print uln]
[1] Else do [2] to [9]

[2] Let x1 = ceiling((1+x-L)/2), let y1 = floor(y/2)
[3] For n=x1 to yl1, do [4] to [8]

[4] Let s[n] = 0, let d[n] = 0

[5] For k=0 to L-1, do [6] to [7]

(6] Accumulate s[n] += h[k]*ul[k+2*n]

[7] Accumulate d[n] += glk]*u[k+2*n]

[8] Print d[n]

[9] Compute dwt( s[], x1, y1, J-1, h(l, gll, L)

Of course, values d [n] do not have to be printed as soon as they are computed,
they may be stored in an array. For fixed L and J, this array will require O(N)
total elements, and will cost O(NN) operations to fill.

Periodic filter transforms

If foq is a 2g¢-periodic sequence with even period, then it can be used to define a
periodic filter transform Fy4 from 2¢-periodic to g-periodic sequences, and a periodic
adjoint F3, from g-periodic to 2g-periodic sequences. These are, respectively, the
transformations

2q—1 2q—1

Fogu(n) = 3 foglk—20)ulk) = 3 fo(W)u(k +2n), 0<i<gq (5.68)
k=0 k’'=0

and
qg—1
Fo(k) = Y foq(k=2n)v(n) (5.69)
n=0
g—1 L
Z faq@n7) v (5 = 1), if k € [0,2¢—2] is even,
= "7 (5.70)

qg—1
> Foq@n+1)v(—=—n"), if k€ [1,2¢—1] is odd.

n''=0

We have performed the same substitutions as in Equations 5.61 and 5.62. Except
for the index ranges, the formulas are the same.

Periodization commutes with filter transforms: we get the same periodic se-
quence whether we first filter an infinite sequence and then periodizes the result,
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or first periodize both the sequence and the filter and then perform a periodic filter
transform. To be precise:

Lemma 5.12 (Flu), = Faquaq and (F*v)y, = F3vq.
Proof: Note that

(Fu)y(n) = > Fuln+qj) = Y > flk—2[n+aqji)ulk)

j=—o00 j=—0o0 k=—o00
= > | D ft—2m—2gj) | ulk) = D foq(k—2n)u(k)
k=—oc0 \j=—o0 k=—o0
2q—1 0o
= YY" fagllr +2qks — 2n)u(k + 2qks)
k1=0 ka=—o00
2q—1 o]
= ngq(k1—2n) Z u(k1+2qk2)
k1=0 ko=—00
2q—1
= Z fgq(kl — 271)’LL2q(]€1).
k1=0
Also,
(F'v)y, (k) = >0 Frok+2q) = 3, 3 J(k+2]-2n)v(n)
= > | > flt2gi-2n) | v(n) = > Fag(k—2n)v(n)
n=-—oo j=—o00 n=-—00
q—1 00
= 3 Y faglk—2n1 —2gn2) v(ny + qna)
n1=0mng=—00
q—1 e’}
= Zqu(k—in) Z v(ny + qnz)
n1=0 ng=—00
q—1
= > faglk —2n1) vg(n1).
n1=0

O

Thus, any redundancy introduced by periodizing an even-length input signal can
be removed by ignoring all but one period of the output.

A 2¢g-periodized pair of orthogonal CQF's h, g retain their orthogonal CQF prop-
erties. A 2g-periodic input sequence u may be completely described by 2q coef-
ficients, and Ha, and G, each produce g-periodic outputs that are completely



