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Thus ¢(t—k) € V_1 for every integer k. In fact, {¢)(t—k) : k € Z} is an orthonormal
subset of V_;:

((t —n), y(t - )> =
_ Zzg <\/—¢(2t—2n—l) V202t — 2m — k))

= ZZg g(k)o(2n+1—2m — k)
—Zg m—n) + k)g(k) = J(n —m).

This mother function defines another collection of subspaces in the MRA. Put
Wy = span{¢(t — k) : k € Z}, and observe that Wy, C V_;. In general, for any
integer j, put

W; < span {1277t — k) : k € Z}. (5.51)

Then W; C V;_1. Note that {277/2¢(277t — k) : k € Z} is an orthonormal basis
for Wj.

By the independence condition, every basis vector of Wy is orthogonal to every
basis vector of Vj:

(Yt —n),o(t - )> =
_ Zzg <\/_¢(2t—2n—l) V2 (2t — 2m — k:)>

= ZZQ d2n+1—-2m—k)
—Zg n—m)+kh(k) = 0.

Also, since (1p(t —n), ¢p(t —m)) = 27 ((27t — n), (27t —m)) for every j € Z, ev-
ery basis vector of W; is orthogonal to every basis vector of V;. In other words,
W; LV;.

Multiresolution analysis works because f € V_; is the sum of an average part
that lies in V) and a complementary detail part that lies in Wy:

Lemma 5.8 Wy + Vp = V_;.

Proof: We first show that each basis function of V_; is a sum of a function in Vj
and a function in Wy, namely, that

(2t — n) Zhn—% —|—Zgn—2k — k). (5.52)

Using the two-scale relations for the scaling and mother functions, we may expand
the ¢ and % terms. Then we use Equation 5.45, the completeness condition, to
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evaluate the sum over index k as follows:

Zhn—Qk ot —k +Zgn—2k —k) =
- ZZhn—% (m)V2¢(2t — 2k —m)
+ zk: > 9(n—2k)g(m)V26(2t — 2k — m)
- Z (Zh n—2k)h m—2k)+Mg(m—2k)) V2¢(2t —m)
m)V20(2t —m) = V2¢(2t —n).

|
E?

Thus, for any u = u(t) = >, c(k)V2¢(2t — k) € V_q, there is a function
Pou(t) S, s(k)é(t — k) € Vo, where s(k) = (¢(t — k), u(t)), and a function
Qou(t) = f (t) = Dopd(k)p(t — k) € Wo, where d(k) = ((t — k), u(t)), and since c(n) =
S h(n —2k)s(k) + 3, g(n — 2k)d(k), it follows that u = Pyu + Qou. O

This decomposition generalizes to arbitrary scales in the MRA. For fixed j € Z,
define the functions

o) = 27929027t —k), keZteR (5.53)
V(1) 27227t — k), keZteR (5.54)
These are orthonormal basis vectors for V; and Wj, respectively.
Corollary 5.9 For every integer j, W; +V; =V;_4

Proof: We substitute ¢ « 277¢ and multiply by 277/2 everywhere in Equation 5.52
in the proof of Lemma 5.8, then apply the definitions of ¢; and v to get

Gjtn(t) =Y h(n—2k) ¢ju(t) + Y g(n — 2k) Yy (h). (5.55)
k k

We have thus written an arbitrary basis function of V;_; as a linear combination
of basis functions of V; and W;. a

The subspaces W; are the differences between the adjacent V; and V;_;. Know-
ing the expansion coefficients of u’s approximation in Vj, it is only necessary to get
the expansion coefficients of its projection on W; (and to do some arithmetic) in
order to get a better approximation of w in V;_;. We may call W; a detail space,
since it contains the details from w’s approximation in V;_; which are missing in
V;. Repeated application of this splitting yields the discrete wavelet decomposition:

Corollary 5.10 Vo =Wy +Wa +--- +W; +Vj, for any integer J > 0. O

If the scale and detail spaces form an orthogonal MRA, then the subspaces in the
sum are pairwise orthogonal.



