
256 APPENDIX A. ANSWERS

Second, note that if e and f are finitely-supported sequences with respective
P -periodizations eP and fP , then

P−1∑

k′=0

eP (k′ + 2n) fP (k′ + 2m) =

=

P−1∑

k′=0

∑

j

∑

i

e(k′ + 2n + jP) f(k′ + 2m + iP)

=

P−1∑

k′=0

∑

j

∑

l

e(k′ + jP + 2n) f(k′ + jP + 2(m + lP ′)),

after substituting i ← l + j. The sums over 0 ≤ k′ < P and j ∈ Z combine
into a sum over all integers k ∈ Z, and the l and k sums may be interchanged,
giving

P−1∑

k′=0

eP (k′ + 2n) fP (k′ + 2m) =
∑

l

∑

k

e(k + 2n) f(k + 2(m + lP ′)).

If e = f = h and h is self-orthonormal, then the inner sum over k is δ(n −
(m + lP ′)). Thus the outer sum over l is δP ′(n −m), which is 1 if and only
if n ≡ m (mod P ′); otherwise it is zero. The same holds if e = f = g is
self-orthonormal. If e = h and f = g are independent, the inner sum over k is
always zero, so the total is zero. This establishes periodic independence and
self-orthonormality.

Finally,

P ′
−1∑

k′=0

fP (2k′ + n) fP (2k′ + m) =

=

P ′
−1∑

k′=0

∑

j

∑

i

f(2k′ + n + jP) f(2k′ + m + iP)

=

P ′
−1∑

k′=0

∑

j

∑

i

f(2(k′+jP ′) + n) f(2(k′+jP ′) + m + (i−j)P),

so substituting i ← l + j and k′ ← k − jP ′ and combining the k′ and j

summations into one makes this
∑

k

∑

l

f(2k + n) f(2k + m + lP).

The l and k sums may be interchanged. The cases f ← h and f ← g give

P ′
−1∑

k′=0

hP (2k + n) hP (2k + m) =
∑

l

∑

k

h(2k + n) h(2k + m + lP);

A.5. . . . TO CHAPTER 5 EXERCISES 257

P ′
−1∑

k′=0

gP (2k + n) gP (2k + m) =
∑

l

∑

k

g(2k + n) g(2k + m + lP).

If h and g satisfy the completeness condition, adding these together gives∑
l δ(n− (m + lP)) = δP (n−m), proving periodic completeness. 2

17. Solution: The following is a Standard C implementation. We begin by
implementing the inverse filter transform:

Contents of ipcqfilt.c

int mod(int x, int M) { /* x%M for M>1 and any x */

if(x<0) x-= x*M; /* x-x*modulus>0 equals x mod M */

return x%M;

}

void ipcqfilter(float out[], const float in[], int q) {

int n2, k2;

for(k2=0; k2<q; k2++) {

out[2*k2]=out[2*k2+1]=0;

for(n2=0;n2<L/2;n2++) {

out[2*k2] += h[2*n2]*in[mod(k2-n2, q)];

out[2*k2] += g[2*n2]*in[mod(k2-n2, q) + q];

out[2*k2+1] += h[2*n2+1]*in[mod(k2-n2, q)];

out[2*k2+1] += g[2*n2+1]*in[mod(k2-n2, q) + q];

}

}

}

Notice that these functions will work with filters of any even length L.

Next, we implement the inverse to Mallat’s periodic discrete wavelet transform
on N = 2JK samples, generalizing ipdwt0():

Reconstruction from Mallat’s Periodic Wavelet Expansion

ipdwt(u[], N, J, h[], g[], L):

[0] If J>0, then do [1-] to [4]

[1] Compute ipdwt(u[], N/2, J-1, h[], g[], L)

[2] Allocate temp[0]=0,...,temp[N-1]=0

[3] Compute ipcqfilter(temp[], u[], N/2, h[], g[], L)

[4] For i=0 to N-1, let u[i] = temp[i]

For practical reasons, we should place the allocation and deallocation of
temp[] as close as possible to the filter transform. This frees unneeded mem-
ory for the recursive function call. In Standard C, this becomes:

