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Third, we observe that another filter with similar orthogonality properties can
be defined from h:

g(k) = (−1)kh(1− k), for all k ∈ Z. (5.41)

Clearly, g will be finite whenever h is finite, and given g we may determine h by
the similar formula h(k) = (−1)1−kg(1− k). This and Equation 5.40 implies the
high-pass filter condition for g:

∑

k

g(2k) = −
∑

k

g(2k + 1) =
1√
2

(

⇒
∑

k

g(k) = 0

)

. (5.42)

Fourth, there is a self-orthonormality condition for g:
∑

k

g(k)g(k + 2n) =
∑

k

(−1)kh(1− k)(−1)k+2nh(1− k − 2n)

=
∑

k

h(1− k)h(1− k − 2n)

=
∑

k

h(k)h(k − 2n) = δ(n). (5.43)

Fifth, for any integer n, the following independence condition holds between the
two filters h and g:
∑

k

g(k)h(k + 2n) =
∑

k

(−1)kh(1− k)h(k + 2n) (5.44)

=
∑

even k

h(1− k)h(k + 2n)−
∑

odd k

h(1− k)h(k + 2n)

=
∑

p

h(2p+1)h(2n−2p)−
∑

q

h(2n−2q)h(2q+1) = 0.

Here k ← −2p in the first sum and k ← 2q + 1− 2n in the second.
Finally, the filter pair h, g satisfies the completeness condition:
∑

k

h(2k + n)h(2k + m) +
∑

k

g(2k + n)g(2k + m) = δ(n−m). (5.45)

This can be shown case-by-case. We first write g in terms of h, making the sum
∑

k

h(2k + n)h(2k + m) + (−1)n+m
∑

k

h(2k + 1− n)h(2k + 1−m).

Then we put p = m−n to have n+m = 2n+p and (−1)n+m = (−1)p, and consider
the cases:

• If n = 2n′ is even, then substituting k ← k−n′ in the first sum and k ← k+n′

in the second reduces them to
∑

k

h(2k)h(2k + p) + (−1)p
∑

k

h(2k + 1)h(2k + 1− p).
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– If p = 2p′ is even, then substituting k ← k + p′ in the second sum gives

∑

k

h(2k)h(2k+p) +
∑

k

h(2k+1+p)h(2k + 1) =
∑

k

h(k)h(k+p)

=
∑

k

h(k)h(k + 2p′) = δ(p′) = δ(n−m).

– If p = 2p′ + 1 is odd, then substituting k ← k + p′ in the second sum
gives

∑

k

h(2k)h(2k + p)−
∑

k

h(2k + p)h(2k) = 0.

This agrees with the value of δ(n − m), which is 0 in this case since
p = m− n being odd means n 6= m.

• If n = 2n′ + 1 is odd, then substituting k ← k − n′ in the first sum and
k ← k + n′ in the second reduces them to

∑

k

h(2k + 1)h(2k + 1 + p) + (−1)p
∑

k

h(2k)h(2k − p).

– If p = 2p′ is even, then substituting k ← k + p′ in the second sum gives
∑

k

h(2k+1)h(2k+1+p) +
∑

k

h(2k + p)h(2k) =
∑

k

h(k)h(k + p)

=
∑

k

h(k)h(k + 2p′) = δ(p′) = δ(n−m).

– If p = 2p′ − 1 is odd, then substituting k ← k + p′ in the second sum
gives

∑

k

h(2k + 1)h(2k + 1 + p)−
∑

k

h(2k + p + 1)h(2k + 1) = 0.

This agrees with the value of δ(n − m), which is 0 in this case since
p = m− n being odd means n 6= m.

The sequences h and g derived from the MRA are called orthogonal conjugate

quadrature filters, or orthogonal CQFs. We may abstract the properties just de-
duced from the MRA conditions:

Orthogonal CQF Conditions (Basic)

Finiteness: Sequence h = {h(k) : k ∈ Z} consists of zeroes for all but
finitely many values of k.

Normalization of h:
∑

k h(2k) =
∑

k h(2k + 1) = 1/
√

2, and thus
∑

k h(k) =
√

2.

Self-Orthonormality of h:
∑

k h(k + 2n)h(k + 2m) = δ(n −m), for
every n, m ∈ Z.
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From these stand-alone assumptions, the other properties of h and g can be deduced:

Orthogonal CQF Conditions (Derived)

Conjugacy: For some fixed integer M there is a finitely-supported se-
quence g = {g(k) : k ∈ Z}, defined by g(k) = (−1)kh(2M − 1− k)
for each k ∈ Z.

Normalization of g:
∑

k g(2k) = −∑k g(2k + 1) = 1/
√

2, and thus
∑

k g(k) = 0.

Self-Orthonormality of g:
∑

k g(k + 2n)g(k + 2m) = δ(n−m).

Independence:
∑

k g(k + 2n)h(k + 2m) = 0 for any n, m ∈ Z.

Completeness:
∑

k h(2k + n)h(2k + m) +
∑

k g(2k + n)g(2k + m) =
δ(n−m).

The so-called lazy filters, h(k) =
√

2 δ(k − 1) and g(k) =
√

2 δ(k) satisfy the
finiteness, conjugacy, self-orthonormality, independence and completeness condi-
tions, but only part of the normalization conditions. This partial example is a
useful test case for some constructions.

To be definite, suppose that for some fixed L > 0, h(k) = 0 if k < 0 or k ≥ L;
this may be called conventional indexing. Then the length of the finite support of h
is no more than L. If it is exactly L, namely if h(0) 6= 0 and h(L−1) 6= 0, then h is
said to have filter length L. The normalization condition implies that filter length
L is at least two. Orthogonality imposes an additional constraint:

Lemma 5.7 An orthogonal conjugate quadrature filter’s length must be even.

Proof: It is enough to prove this for the low-pass filter h, since the high-pass
conjugate filter g will have the same length L as h. If L = 2l + 1 for l > 0, then
L− 1 = 2l is the largest index k for which h(k) 6= 0, so

0 =
∑

k

h(k)h(k + 2l) = h(0)h(2l) = h(0)h(L− 1).

Thus either h(0) = 0 or h(L − 1) = 0, contradicting the assumption that h has
length L. 2

Constructing orthogonal filter pairs

How can we construct a finite sequence h = {h(k) : k ∈ Z} satisfying the orthogonal
CQF conditions?

One solution can be found right away, the Haar filter, which is the unique
orthogonal CQF of length two:

h(k) =

{

1√
2
, if k = 0 or k = 1,

0, if k /∈ {0, 1}; g(k) =







1√
2
, if k = 0,

− 1√
2
, if k = 1,

0, if k /∈ {0, 1}.
(5.46)


