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Figure 5.5: The pyramid algorithm for the discrete wavelet transform (DWT).
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Figure 5.6: The pyramid algorithm for the inverse discrete wavelet transform
(iDWT).

dj+1(n) =
∑

k

g(k)sj(2n + k) =
∑

k

g(k − 2n)sj(k); (5.59)

sj−1(n) =
∑

k

h(n− 2k) sj(k) +
∑

k

g(n− 2k) dj(k). (5.60)

Equations 5.58 and 5.59 provide a recursive algorithm, the Mallat pyramid algo-

rithm depicted in Figure 5.5, for computing expansions in any of the subspaces
of the MRA. The finitely-supported sequence s0 = {s0(k) : k ∈ Z}, defined by
s0(k) = 〈φ(t− k), u(t)〉, completely determines the approximation P0u ∈ V0. The
wavelet expansion of P0u to level J > 0 consists of the sequences (d1, d2, . . . , dJ ; sJ).
Sequence sJ determines the crude approximation PJu ∈ VJ , while dJ , dJ−1, and
so on contain extra information needed to refine it successively into the better
approximation P0u ∈ V0.

Reconstruction from the wavelet expansion is done by a similar pyramid al-
gorithm, depicted in Figure 5.6. The arrows are reversed using adjoints, and the
results are summed according to Equation 5.60.

In both pyramid algorithms, sequences s1, s2, . . . , sJ−1 are computed along the
way, even though they are not part of the discrete wavelet expansion or the recon-
structed signal. Enough temporary storage to hold another copy of the signal may
therefore be needed, depending upon how the arrow operations are implemented.

Filter transforms

A finitely-supported sequence f = {f(k) : k ∈ Z} defines a filter transform, acting
on arbitrary sequences u = {u(k) : k ∈ Z} by either of the two equivalent formulas,
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related by the substitution k ← k′ + 2n:

Fu(n) =
∑

k

f(k − 2n)u(k) =
∑

k′

f(k′)u(k′ + 2n), n ∈ Z. (5.61)

This F is a linear transformation on every vector space of complex-valued sequences,
including the inner product space `2 of square-summable sequences with inner
product 〈u, v〉 =

∑

k u(k)v(k). In that space, F has an adjoint F ∗ that satisfies
〈Fu, v〉 = 〈u, F ∗v〉 for all u and v. But then,

∑

n

Fu(n)v(n) =
∑

n

(

∑

k

f(k − 2n)ū(k)

)

v(n)

=
∑

k

(

ū(k)
∑

n

f(k − 2n)v(n)

)

def
=

∑

k

ū(k)F ∗v(k),

which defines two equivalent formulas for the adjoint filter transform:

F ∗v(k) =
∑

n

f(k − 2n) v(n) (5.62)

=



















∑

n′

f(2n′) v(
k

2
− n′), if k ∈ Z is even,

∑

n′′

f(2n′′+1) v(
k−1

2
− n′′), if k ∈ Z is odd.

These are related by the substitutions n← k
2
− n′ if k is even, and n← k−1

2
− n′′

if k is odd.
Composing F and its adjoint gives

F ∗Fu(j) =
∑

n

f(2n− j)Fu(n) =
∑

n,k

f(2n− j)f(2n− k)u(k). (5.63)

Similarly,

FF ∗u(m) =
∑

k

f(2m− k)F ∗u(k) =
∑

k,n

f(2m− k)f(2n− k)u(n). (5.64)

Because of the dilation by 2, F typically shrinks the support of sequences, while
F ∗ enlarges it:

Lemma 5.11 Suppose that the sequence f is supported on the index interval [a, b]:
f = {. . . , 0, f(a), f(a + 1), . . . , f(b − 1), f(b), 0, . . .}, since f(n) = 0 if n < a or

n > b. For any sequence u supported on [x, y],

• Fu is supported on [
⌈

x−b
2

⌉

,
⌊

y−a
2

⌋

];

• F ∗u is supported on [2x + a, 2y + b].



5.2. DISCRETE WAVELET TRANSFORMS 159

Proof: Taking into account the support, the second version of the filter transform
formula reduces to

Fu(n) =

b
∑

k′=a

f(k′)u(k′ + 2n). (5.65)

Notice that the summand will be zero if b + 2n < x or a + 2n > y. Only output
values at indices n ∈ [x′, y′] need to be computed, where x′ = d(x− b)/2e and
y′ = b(y − a)/2c.

On the other hand, the first version of the adjoint filter transform formula
reduces to

F ∗v(k) =

y
∑

n=x

f(k − 2n) v(n). (5.66)

The summand will be zero unless a ≤ k − 2n ≤ b and x ≤ n ≤ y. Hence, output
values need only be computed at indices k ∈ [x′′, y′′], where x′′ = 2x + a and
y′′ = 2y + b. 2

Lemma 5.11 illuminates two kinds of spreading in support that occur with filter
transforms. Firstly, if F is one filter from an orthogonal CQF pair, then F ∗F is an
orthogonal projection on `2, but the support of F ∗Fu may be greater than that of u.
If u is finitely-supported on the index interval [x, y], and f is supported on [a, b], then
F ∗Fu will be finitely supported in the index interval

[

2
⌈

x−b
2

⌉

+ a, 2
⌊

y−a

2

⌋

+ b
]

.
This contains [x− (b− a− 1), y + (b− a− 1)], which in turn contains [x, y] and is
strictly larger if and only if b− a > 1. The only orthogonal CQF with b− a ≤ 1 is
the Haar pair, with a = 0, b = 1 in the conventional indexing giving b− a = 1.

Secondly, a CQF pair H, G of filter transforms can produce more total output
values than there are input values. Suppose the supports are [a, b] for H and [c, d] for
G. For a finitely supported sequence u = {u(x), . . . , u(y)} of length N = 1 + y−x,
the high-pass and low-pass parts of the signal will be supported on the intervals
[⌈

x−b
2

⌉

,
⌊

y−a

2

⌋]

and
[⌈

x−d
2

⌉

,
⌊

y−c

2

⌋]

, respectively, with total length

(

1 +

⌊

y − a

2

⌋

−

⌈

x− b

2

⌉)

+

(

1 +

⌊

y − c

2

⌋

−

⌈

x− d

2

⌉)

. (5.67)

The total support length will be greater than 1 + y − x if and only if b− a > 1 or
d − c > 1. The Haar CQF pair has b− a = 1 and d − c = 1, and is the only filter
pair that does not cause spreading of the support.

Successive applications of H and G give the (nonperiodic) discrete orthogonal
wavelet transform on finitely-supported infinite sequences. There are only finitely
many finitely-supported sequences d1, d2, . . . , dJ , and sJ to compute, and each out-
put coefficient costs only a finite number of operations since h, g are both finite
sequences, say of length L. Since L must be even by Lemma 5.7, we can write
L = 2M for an integer M . If h is conventionally indexed, so that h(k) is nonzero
only for 0 ≤ k < L, then we may choose3 to define g(k) = (−1)kh(2M − 1− k) to
insure that g(k) is also nonzero only for 0 ≤ k < L.

3Work Exercise 12 to see why!



160 CHAPTER 5. SCALE AND RESOLUTION

With these indexing conventions, if sj(k) is supported in x ≤ k ≤ y, then
dj+1(n) and sj+1(n) may be nonzero for d(1 + x− L)/2e ≤ n ≤ by/2c. Hence, the
output sequences are of varying lengths:

Mallat’s Discrete Wavelet Transform

dwt( u[], x, y, J, h[], g[], L ):

[0] If J=0 then for n = x to y, print u[n]

[1] Else do [2] to [9]

[2] Let x1 = ceiling((1+x-L)/2), let y1 = floor(y/2)

[3] For n=x1 to y1, do [4] to [8]

[4] Let s[n] = 0, let d[n] = 0

[5] For k=0 to L-1, do [6] to [7]

[6] Accumulate s[n] += h[k]*u[k+2*n]

[7] Accumulate d[n] += g[k]*u[k+2*n]

[8] Print d[n]

[9] Compute dwt( s[], x1, y1, J-1, h[], g[], L )

Of course, values d[n] do not have to be printed as soon as they are computed,
they may be stored in an array. For fixed L and J , this array will require O(N)
total elements, and will cost O(N) operations to fill.

Periodic filter transforms

If f2q is a 2q-periodic sequence with even period, then it can be used to define a
periodic filter transform F2q from 2q-periodic to q-periodic sequences, and a periodic

adjoint F ∗

2q from q-periodic to 2q-periodic sequences. These are, respectively, the
transformations

F2qu(n) =

2q−1
∑

k=0

f2q(k − 2n)u(k) =

2q−1
∑

k′=0

f2q(k
′)u(k′ + 2n), 0 ≤ i < q; (5.68)

and

F ∗

2qv(k) =

q−1
∑

n=0

f2q(k−2n) v(n) (5.69)

=























q−1
∑

n′=0

f2q(2n′) v(
k

2
− n′), if k ∈ [0, 2q−2] is even,

q−1
∑

n′′=0

f2q(2n′′+1) v(
k−1

2
−n′′), if k ∈ [1, 2q−1] is odd.

(5.70)

We have performed the same substitutions as in Equations 5.61 and 5.62. Except
for the index ranges, the formulas are the same.

Periodization commutes with filter transforms: we get the same periodic se-
quence whether we first filter an infinite sequence and then periodizes the result,
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or first periodize both the sequence and the filter and then perform a periodic filter
transform. To be precise:

Lemma 5.12 (Fu)q = F2qu2q and (F ∗v)
2q = F ∗

2qvq.

Proof: Note that

(Fu)q (n) =

∞
∑

j=−∞

Fu(n + qj) =

∞
∑

j=−∞

∞
∑

k=−∞

f(k − 2[n + qj])u(k)

=

∞
∑

k=−∞





∞
∑

j=−∞

f(k−2n−2qj)



u(k) =

∞
∑

k=−∞

f2q(k−2n)u(k)

=

2q−1
∑

k1=0

∞
∑

k2=−∞

f2q(k1 + 2qk2 − 2n)u(k1 + 2qk2)

=

2q−1
∑

k1=0

f2q(k1 − 2n)

∞
∑

k2=−∞

u(k1 + 2qk2)

=

2q−1
∑

k1=0

f2q(k1 − 2n)u2q(k1).

Also,

(F ∗v)
2q (k) =

∞
∑

j=−∞

F ∗v(k + 2qj) =

∞
∑

j=−∞

∞
∑

n=−∞

f([k + 2qj]− 2n) v(n)

=

∞
∑

n=−∞





∞
∑

j=−∞

f(k+2qj−2n)



 v(n) =

∞
∑

n=−∞

f2q(k−2n) v(n)

=

q−1
∑

n1=0

∞
∑

n2=−∞

f2q(k − 2n1 − 2qn2) v(n1 + qn2)

=

q−1
∑

n1=0

f2q(k − 2n1)

∞
∑

n2=−∞

v(n1 + qn2)

=

q−1
∑

n1=0

f2q(k − 2n1) vq(n1).

2

Thus, any redundancy introduced by periodizing an even-length input signal can
be removed by ignoring all but one period of the output.

A 2q-periodized pair of orthogonal CQFs h, g retain their orthogonal CQF prop-
erties. A 2q-periodic input sequence u may be completely described by 2q coef-
ficients, and H2q and G2q each produce q-periodic outputs that are completely


