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Thus ψ(t−k) ∈ V
−1 for every integer k. In fact, {ψ(t−k) : k ∈ Z} is an orthonormal

subset of V
−1:

〈ψ(t− n), ψ(t−m)〉 =

=
∑

l

∑

k

g(l)g(k)
〈√

2φ(2t− 2n− l),
√

2φ(2t− 2m− k)
〉

=
∑

l

∑

k

g(l)g(k)δ(2n+ l − 2m− k)

=
∑

k

g(2(m− n) + k)g(k) = δ(n−m).

This mother function defines another collection of subspaces in the MRA. Put
W0 = span {ψ(t − k) : k ∈ Z}, and observe that W0 ⊂ V

−1. In general, for any
integer j, put

Wj
def
= span {ψ(2−jt− k) : k ∈ Z}. (5.51)

Then Wj ⊂ Vj−1. Note that {2−j/2ψ(2−jt − k) : k ∈ Z} is an orthonormal basis
for Wj .

By the independence condition, every basis vector of W0 is orthogonal to every
basis vector of V0:

〈ψ(t− n), φ(t−m)〉 =

=
∑

l

∑

k

g(l)h(k)
〈√

2φ(2t− 2n− l),
√

2φ(2t− 2m− k)
〉

=
∑

l

∑

k

g(l)h(k)δ(2n+ l − 2m− k)

=
∑

k

g(2(n−m) + k)h(k) = 0.

Also, since 〈ψ(t− n), φ(t−m)〉 = 2j
〈

ψ(2jt− n), φ(2jt−m)
〉

for every j ∈ Z, ev-
ery basis vector of Wj is orthogonal to every basis vector of Vj . In other words,
Wj ⊥ Vj .

Multiresolution analysis works because f ∈ V
−1 is the sum of an average part

that lies in V0 and a complementary detail part that lies in W0:

Lemma 5.8 W0 + V0 = V
−1.

Proof: We first show that each basis function of V
−1 is a sum of a function in V0

and a function in W0, namely, that

√
2φ(2t− n) =

∑

k

h(n− 2k)φ(t− k) +
∑

k

g(n− 2k)ψ(t− k). (5.52)

Using the two-scale relations for the scaling and mother functions, we may expand
the φ and ψ terms. Then we use Equation 5.45, the completeness condition, to



5.2. DISCRETE WAVELET TRANSFORMS 155

evaluate the sum over index k as follows:
∑

k

h(n− 2k)φ(t− k) +
∑

k

g(n− 2k)ψ(t− k) =

=
∑

k

∑

m

h(n− 2k)h(m)
√

2φ(2t− 2k −m)

+
∑

k

∑

m

g(n− 2k)g(m)
√

2φ(2t− 2k −m)

=
∑

m

(

∑

k

h(n−2k)h(m−2k) + g(n−2k)g(m−2k)

)√
2φ(2t−m)

=
∑

m

δ(n−m)
√

2φ(2t−m) =
√

2φ(2t− n).

Thus, for any u = u(t) =
∑

k c(k)
√

2φ(2t − k) ∈ V
−1, there is a function

P0u(t)
def
=

∑

k s(k)φ(t − k) ∈ V0, where s(k) = 〈φ(t − k), u(t)〉, and a function

Q0u(t)
def
=

∑

k d(k)ψ(t− k) ∈W0, where d(k) = 〈ψ(t− k), u(t)〉, and since c(n) =
∑

k h(n− 2k)s(k) +
∑

k g(n− 2k)d(k), it follows that u = P0u+Q0u. 2

This decomposition generalizes to arbitrary scales in the MRA. For fixed j ∈ Z,
define the functions

φjk(t)
def
= 2−j/2φ(2−jt− k), k ∈ Z, t ∈ R (5.53)

ψjk(t)
def
= 2−j/2ψ(2−jt− k), k ∈ Z, t ∈ R (5.54)

These are orthonormal basis vectors for Vj and Wj , respectively.

Corollary 5.9 For every integer j, Wj + Vj = Vj−1.

Proof: We substitute t← 2−jt and multiply by 2−j/2 everywhere in Equation 5.52
in the proof of Lemma 5.8, then apply the definitions of φjk and ψjk to get

φj−1,n(t) =
∑

k

h(n− 2k)φjk(t) +
∑

k

g(n− 2k)ψjk(t). (5.55)

We have thus written an arbitrary basis function of Vj−1 as a linear combination
of basis functions of Vj and Wj . 2

The subspaces Wj are the differences between the adjacent Vj and Vj−1. Know-
ing the expansion coefficients of u’s approximation in Vj , it is only necessary to get
the expansion coefficients of its projection on Wj (and to do some arithmetic) in
order to get a better approximation of u in Vj−1. We may call Wj a detail space,
since it contains the details from u’s approximation in Vj−1 which are missing in
Vj . Repeated application of this splitting yields the discrete wavelet decomposition:

Corollary 5.10 V0 = W1 +W2 + · · ·+WJ + VJ , for any integer J > 0. 2

If the scale and detail spaces form an orthogonal MRA, then the subspaces in the
sum are pairwise orthogonal.


