Filters of length four are not unique. Let h be an orthogonal CQF with nonzero real coefficients $h(0), h(1), h(2)$, and $h(3)$. Then h must satisfy the norm condition $h^{2}(0)+h^{2}(1)+h^{2}(2)+h^{2}(3)=1$, plus the following constraints:

$$
\begin{equation*}
h(0)+h(2)=\frac{1}{\sqrt{2}} ; \quad h(1)+h(3)=\frac{1}{\sqrt{2}} ; \quad h(0) h(2)+h(1) h(3)=0 \tag{5.47}
\end{equation*}
$$

By the first two conditions, picking $h(0)$ and $h(1)$ determines $h(2)=\frac{1}{\sqrt{2}}-h(0)$ and $h(3)=\frac{1}{\sqrt{2}}-h(1)$. The third condition holds if and only if there is some real number c for which $h(2)=c h(1)$ and $h(3)=-c h(0)$. The result is a system of two linear equations for $h(0)$ and $h(1)$, containing a free parameter c :

$$
\begin{aligned}
h(0)+\operatorname{ch}(1) & =\frac{1}{\sqrt{2}} \\
-\operatorname{ch}(0)+h(1) & =\frac{1}{\sqrt{2}}
\end{aligned} \quad \Rightarrow \quad\left(\begin{array}{cc}
1 & c \\
-c & 1
\end{array}\right)\binom{h(0)}{h(1)}=\frac{1}{\sqrt{2}}\binom{1}{1} .
$$

The matrix is nonsingular for every real c since its determinant, $1+c^{2}$, is at least one, and the one-parameter set of solutions is obtainable by inverting:

$$
\binom{h(0)}{h(1)}=\frac{1}{\sqrt{2}\left(1+c^{2}\right)}\left(\begin{array}{cc}
1 & -c \tag{5.48}\\
c & 1
\end{array}\right)\binom{1}{1} \Rightarrow \begin{aligned}
& h(0)=\frac{1-c}{\sqrt{2}\left(1+c^{2}\right)} \\
& h(1)=\frac{1+c}{\sqrt{2}\left(1+c^{2}\right)}
\end{aligned}
$$

The remaining coefficients are then $h(2)=\frac{c(c+1)}{\sqrt{2}\left(1+c^{2}\right)}$ and $h(3)=\frac{c(c-1)}{\sqrt{2}\left(1+c^{2}\right)}$.
The Daubechies 4 filters are obtained this way using $c=2-\sqrt{3}$:

$$
\begin{equation*}
h(0)=\frac{1+\sqrt{3}}{4 \sqrt{2}} ; \quad h(1)=\frac{3+\sqrt{3}}{4 \sqrt{2}} ; \quad h(2)=\frac{3-\sqrt{3}}{4 \sqrt{2}} ; \quad h(3)=\frac{1-\sqrt{3}}{4 \sqrt{2}} . \tag{5.49}
\end{equation*}
$$

The normalization condition for 5.47 seems to impose an additional constraint on c. However, that condition is satisfied for all real c :

$$
\begin{aligned}
h^{2}(0)+h^{2}(1)+h^{2}(2)+h^{2}(3) & =\left(1+c^{2}\right)\left(h^{2}(0)+h^{2}(1)\right) \\
& =\left(1+c^{2}\right)\left(\frac{1-2 c+c^{2}}{2\left(1+c^{2}\right)^{2}}+\frac{1+2 c+c^{2}}{2\left(1+c^{2}\right)^{2}}\right)=1
\end{aligned}
$$

If all four coefficients are nonzero, then $c \notin\{0, \pm 1, \pm \infty\}$. Otherwise, the degenerate cases are

$$
\begin{array}{cccc}
c=-1 & \Rightarrow & h=\left\{\frac{1}{\sqrt{2}}, 0,0, \frac{1}{\sqrt{2}}\right\} ; & c=0
\end{array} \quad \Rightarrow \quad h=\left\{\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0,0\right\} ; ~ 子 \quad, \quad c= \pm \infty \quad \Rightarrow \quad h=\left\{0,0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\} .
$$

These are all just variations on the Haar filters.

Mother functions and details

The conjugate filter g derived from h defines the mother function for the MRA by way of a linear transformation G :

$$
\begin{equation*}
\psi(t)=\sum_{k} g(k) \sqrt{2} \phi(2 t-k) \stackrel{\text { def }}{=} G \phi(t) . \tag{5.50}
\end{equation*}
$$

