17. Solution: (a) Trial division with all six mod-2 polynomials of degree 1 or 2 yields:

$$
\begin{aligned}
t^{3}+t+1 & =(t)\left(t^{2}+1\right)+1 \\
& =(t+1)\left(t^{2}+t\right)+1 \\
& =\left(t^{2}\right)(t)+t+1 \\
& =\left(t^{2}+1\right)(t)+1 \\
& =\left(t^{2}+t\right)(t+1)+1 \\
& =\left(t^{2}+t+1\right)(t+1)+t
\end{aligned}
$$

All of these expressions have nonzero remainders, so $t^{3}+t+1$ is irreducible.
(b) The factorization $t^{4}+t^{2}+1=\left(t^{2}+t+1\right)\left(t^{2}+t+1\right)+0=\left(t^{2}+t+1\right)^{2}$ is discovered by trial division with the six mod-2 polynomials of degree 1 or 2.
18. Solution: For all of these polynomials, we use the following:

Standard C Function: Test Mod-2 Polynomial Divisibility

```
unsigned int least_power (unsigned int mod2poly, int degree) {
    unsigned int rem, mask, highbit, N;
    if(mod2poly%2==0) return 0; /* error: t divides mod2poly */
    highbit = 0x1<<(degree-1); mask = highbit|(highbit-1);
    for(rem=mod2poly&mask, N=degree; rem!=0x1; ++N )
        if( rem & highbit ) rem = ((rem<<1)^mod2poly) & mask;
        else rem <<= 1;
    return N;
}
```

(a) Call least_power () with mod2poly set to 1011 (base 2) and degree set to 3. The return value shows that $t^{3}+t+1$ divides $t^{N}+1$, with $N=7=2^{3}-1$, but no smaller $N>0$.
(b) Mod-2 polynomial 1100000001111, of degree 12, divides $t^{N}+1$ for $N=$ $2047=2^{11}-1$, but no smaller $N>0$.
(c) Mod-2 polynomial 11000000000000101 , of degree 16 , divides $t^{N}+1$ for $N=32767=2^{15}-1$, but no smaller $N>0$.
(d) Mod-2 polynomial 1100000000101000100000001 , of degree 24, divides $t^{N}+$ 1 for $N=7161$, but no smaller $N>0$.
19. Solution: On a computer that has integer types with 33 or more bits, we can use least_power () exactly as in Solution 18. Otherwise, on a computer with 32-bit integers, we simply remove the leftmost, most significant, 33rd bit, setting mod2poly to 00000100110000010001110110110111 (base 2), and

