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Introduction.

Adapted wave form analysis, refers to a collection of FF'T like adapted transform
algorithms.

Given a function or an operator these methods provide a special orthonormal ba-
sis relative to which the function is well represented, and the operator is described by
a sparse matrix. The selected basis functions are chosen inside predefined libraries
of oscillatory localized functions (waveforms). These algorithms are of complex-
ity N log N opening the door for a large range of applications in signal and image
processing, as well as in numerical analysis.

Our goal is to describe and relate traditional windowed Fourier Transform meth-
ods to wavelet, wavelet-packet base algorithms by making explicit their dual nature
and relative role in analysis and computation.

Starting with a recent refinement of the windowed sine and cosine transforms
we will derive an adapted local sine transform show it’s relation to wavelet and
wavelet-packet analysis and describe an analysis tool-kit illustrating the merits of
different adaptive and non-adaptive schemes.

We end with sample applications to signal and image compression statistical

factor analysis, and numerical analysis and P.D.E.

1. Windowed FFT and Adapted Window Selection.

We start with a description of an algorithm to compute the Fourier expansion
of a function on a union of two adjacent intervals of the same size, in terms of the

Fourier expansion on each interval.
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In fact,
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Since d,, are the Fourier coefficients on [0,1] of f(t) — f(t + 1), and are

1
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the coefficients of e~ ", we obtain the coefficients of f2n+1 by convolving these

sequences.

A fast way to compute f2n+1 is to compute the inverse transform on (0, 1) of d,,,

—it/2

multiply by e and recompute the transform on (0,1). This procedure, when

discretized, leads to a Fourier transform algorithm of complexity < C'N (logy N)?
(in complex arithmetic) . (A faster algorithm can be obtained by implementing an

order N computation for the convolution)



Schematic Description
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Figure 1

We see that in order to compute the transform on the large interval, we can start
with adjacent pairs of small intervals, combine coefficients to obtain the expansion
on their union, and continue until we reach the top level. As a result we have

obtained all dyadic windowed Fourier transform as intermediate computations.

Clearly every disjoint collection of intervals equipped with an orthogonal basis
on each provides us with an orthogonal basis for the union. A natural question
that arises in connection with the windowed Fourier transform is how to place the
windows (see Figures 2,3 where the effect of the window selection on the number

of large coefficients is visible).



Optimal window selection
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Figure 2

The signal is a combination of three linear chirps. By choosing small windows
we find three main frequencies per window (the vertical axis is the frequency axis

while the horizontal is the time axis).

In Figure 3 the windows are larger leading to a less efficient intertwined repre-

sentation of the signal.



Large window selection
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Figure 3

For the moment let us consider the question of optimizing the windows to obtain

an efficient representation of a function.
We can proceed as follows:

We start with the adjacent small intervals and consider expansion coefficient
in each separately. We then compute the expansion coefficients on their union.
We can now choose that expansion for which the number of coefficients needed to
capture 99% of the energy is smallest (or that expansion whose “cost” is smallest;

information cost, coding cost, error cost).

We compare the cost of the chosen expansions on two adjacent unions of pairs

to the expansion on their union and again pick the best.

We continue until we reach an optimal distribution of windows (see Figure 4



where the windows were adapted to the voice recording).
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The procedure described above, although natural, is not very useful if we take the
windowed Fourier transform with discontinuous windows, since the discontinuity in-
troduces “large” expansion coefficients, (a cosine basis on each interval is somewhat
better). On the other hand, it is well known that we cannot find a smooth window
function w(z) supported on (—1, 2) such that w(z — k)e?"™ are orthogonal. (This

would imply [w(z)w(z —1)e™?™"*dz = 0 for all m i.e. w(z)w(xz — 1) = 0).

Recently Daubechies ,Jaffard,and Journe as well as Malvar observed that by tak-
ing equal windows and sines or cosines orthogonality can be maintained. Coifman
and Meyer [3] observed that the windows can be chosen to different sizes enabling

adaptive constructions as above. (See Figures 5,6)



Local trigonometric waveforms

Figure 5

Local trigonometric waveforms

N

Figure 6

We start by defining this library of trigonometric waveforms. These are local-
ized sine transforms associated to covering by intervals of R (more generally, of a
manifold).

0
We consider acover R = | J I; I = [oyap1) oy < qipq, write £; = a1 —a; = |1
— o
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and let p;(z) be a window function supported in [o; — €; 1/2, a;+1 + £;+1/2] such

that
> pi(z) =1

and

pi(z) =1—p?(20;11 —x) for x mnear oy

then the functions

Si () = \/%pi(m) sin[(2k + 1)

form an orghonormal basis of L?(R) subordinate to the partition p;. The collection

o7 (@ = )]

of such bases forms a library of orthonormal bases.
It is easy to check that if H;, denotes the space of functions spanned by S; 1 k =

0,1,2,... then H;, + Hy, , is spanned by the functions

i1

Pla) 2 in[(2k + 1)

2 + lir1) 5+ T %)

where
P? = p}(x) + p}y 1 (x)

is a “window” function covering the interval I; U I;, 1. This fundamental identity
permits the useful implementation of the adapted window algorithm described in
Figure 1. (Other possible libraries can be constructed. The space of frequencies
can be decomposed into pairs of symmetric windows around the origin ,on which
a smooth partition of unity is constructed. This and other constructions were
obtained by one of our students E. Laeng [L].

Higher dimensional libraries can also be easily constructed,(as well as libraries on

manifolds) leading to new and direct analysis methods for linear transformations.)

Relation to Wavelets - Wavelet Packets.
We consider the frequency line R split as RT = (0,00) union R~ = (—o0,0).

On L%(0,00) we introduce a window function p(¢) such that > p?(27%¢) =1

k=—o0
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and p(¢) is supported in (3/4, 3) clearly we can view p(27%¢) as a window function

above the interval (2%,2%+1) and observe that

sin {(j + %)w (gg—fk)} p(277E) = si

form an orthonormal basis of L?(R ™). Similarly c; ; = cos [(] + D) (i—fkﬂ p(27F¢)
gives another basis. If we define Si ; as an odd extension to R of s; ; and Cy ;
as an even extension, we find Sy ; 1L Cy/ ; permitting us to write Cy ; £ iS;; =
eiijwf/?’clﬁ({/?) where (&) = ¢™/%p(¢) is the Fourier transform of the base

wavelet U (see Meyer).

We therefore see that wavelet analysis corresponds to windowing frequency space

in “octave” windows (2%, 2F+1).

A natural extension therefore is provided by allowing all dyadic windows in
frequency space and adapted window choice. This sort of analysis is “equivalent”

to wavelet packet analysis.

The wavelet packet analysis algorithms permit us to perform an adapted Fourier
windowing directly in time domain by successive filtering of a function into different
regions in frequency. The dual version of the window selection provides an adapted

subband coding algorithm.

This new library of orthonormal bases constructed in time domain is called the
Wavelet packet library. This library contains the wavelet basis, Walsh functions,

and smooth versions of Walsh functions called wavelet packets.See Figure 7



10

Wavelet Packet Library

Figure 7
We’ll use the notation and terminology of [4], whose results we shall assume.

We are given an exact quadrature mirror filter h(n) satisfying the conditions of

Theorem (3.6) in [4], p. 964, i.e.
> h(n—2k)h(n—20) =6pe, Y _h(n) = V2.
We let gr, = hj_x(—1)* and define the operations F; on ¢*(Z) into “/*(2Z)”

(1-0) FO{Sk}(i) =2 ZSkhkaz‘
Fi{si}(i) =2 Zskgk—zi-

The map F(si) = Fy(sx) ® Fi(sg) € (2(2Z) @ (%(2Z) is orthogonal and

(1.1) FiFy+FFi =1
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We now define the following sequence of functions.
Won(z) = V23 b W, (22 — k)
{ Woni1(z) = V2> ge Wi (22 — k).
Clearly the function Wy(x) can be identified with the scaling function ¢ in [D] and

(1.2)

W1 with the basic wavelet ).

Let us define mg(&) = % 3" hre~ ™€ and

. 1 .
my(§) = —e“mg(E +7) = V2 ngelkg
Remark. The quadrature mirror condition on the operation F = (Fy, F}) is equiv-

alent to the unitarity of the matrix

M= [t ]

Taking the Fourier transform of (1.2) when n = 0 we get

Wo(€) = mo(£/2)Wo(£/2)
Wo(€) = H mo(&/27)
and ’
Wi (&) = m1(£/2)Wo(€/2) = mi(£/2)mo(€/4)mo(€/2%) -+

More generally, the relations (1.2) are equivalent to

(1.3) Wa(€) = [ [ me,(¢/29)

j=1
o0
and n= 3 ;27" (g; =0 or 1).

The fljr;Cltions W, (z — k) form an orthonormal basis of L?(R!). a We define a
library of wavelet packets to be the collection of functions of the form W, (2¢x — k)
where ¢,k € Z,n € N. Here, each element of the library is determined by a scaling
parameter ¢, a localization parameter k and an oscillation parameter n. (The
function W, (2z — k) is roughly centered at 2~‘k, has support of size ~ 27 and
oscillates ~ n times).

We have the following simple characterization of subsets forming orthonormal

bases.
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Proposition. Any collection of indices (¢,n) such that the intervals [2°n,2n +1)

form a disjoint cover of [0, 00) gives rise to an orthonormal basis of L?*.

(These intervals correspond to the partition of frequency space alluded to in §1.)

Motivated by ideas from signal processing and communication theory we were led
to measure the “distance” between a basis and a function in terms of the Shannon
entropy of the expansion. More generally, let H be a Hilbert space.

Let v € H, ||v|| =1 and assume

H:@Zﬂi

an orthogonal direct sum. We define

e¥ (v, {Hi}) = = ) Ilvil*enfvi?

as a measure of distance between v and the orthogonal decomposition.
2 is characterized by the Shannon equation which is a version of Pythagoras’
theorem.

Let

H=a() H)e () H)
—H, ®H_

H' and H; give orthogonal decompositions Hy = Y. H', H_ =5 H;. Then

52(1;; {Hi,Hj}) = 62(’0, {H+,H_}

el (2 1))

[o4]

el (= 285

lo—1I”

This is Shannon’s equation for entropy (if we interpret as in quantum mechanics

| Pr, v||* as the “probability” of v to be in the subspace H.).

We can think of this cover as an even covering of frequency space by windows roughly localized
over the corresponding intervals.
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This equation enables us to search for a smallest entropy space decomposition

of a given vector.

In fact, for the example of the first library restricted to covering by dyadic
intervals we can start by calculating the entropy of an expansion relative to a local
trigonometric basis for intervals of length one, then compare the entropy of an
adjacent pair of intervals to the entropy of an expansion on their union. Pick the
expansion of minimal entropy and continue until a minimum entropy expansion is

achieved (see Figure 1).

In practice, discrete versions of this scheme can be implemented in C'N log N

computations (where IV is the number of discrete samples N = 2%.)

Of course, while entropy is a good measure of concentration or efficiency of
an expansion, various other information cost functions are possible, permitting

discrimination and choice between various special function expansion.

§2. Wavelet Packet and Adapted Waveform Analysis. We would like to
summarize some obvious implications of the preceding discussion. Wavelet packet
analysis consists of a versatile collection of tools for the analysis and manipulation of
signals such as sound and images, as well as more general digital data sets. The user
is provided with a collection of standard libraries of waveforms, which can be chosen
to fit specific classes of signals. These libraries come equipped with fast numerical
algorithms, enabling real time implementation of a variety of signal processing
tasks such as compression, feature extraction for recognition and diagnostics, data

transformation, and manipulation.

The process of analysis of data usually starts by comparing acquired segments
of data with stored “known” samples. As a model, consider how a real sampled
signal is analyzed with such libraries. The example of voice or music can be used

for illustration.

Voice signals consist of modulated oscillations as can be seen in Figure 4, repre-
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senting a segment of a recording of the word “armadillo.” Such a general signal is
a superposition of different structures occurring on different time scales at different
times. One purpose of analysis is to separate and sort these structures. The oscilla-
tions are analogous to musical notes, and the analysis is equivalent to choosing the
best instrument to match to the voice, then finding the musical score to describe

the word.

A musical note can be described by four basic parameters: intensity (or ampli-
tude), frequency, time duration, and time position. Wavelet packets or localized
sinusoids are indexed by the same parameters. In addition, there are other pa-
rameters corresponding to choice of library, i.e., the instrument or recipe used
to generate all the waveforms. For wavelet packets these extra numbers are the
quadrature mirror filter coefficients; for local cosines, they are the smooth window

coefficients.

The process of analysis compares a sound or other signal with all elements of a
given library and picks up large correlations, notes which are good fits to segments
of the signal. A most-concentrated orthogonal subset of these good notes can then
be chosen. This “best basis” realization provides an economical transcription, an
efficient superposition of oscillatory modes on different time scales. When ordered
by decreasing intensity, this transcription sorts the main features out in order of
importance. It permits rebuilding the signal to a specified accuracy with the fewest

waveforms. It can be used to compress signals for digital transmission and storage.

Of more practical value is the ability to compute and manipulate data in com-
pressed parameters. This ability is particularly important for recognition and di-
agnostic purposes. As an illustration, consider a hypothetical diagnostic device for
heartbeats, in which fifty consecutive beats are recorded. We would like to use
this data as a statistical foundation for detection of significant changes in the next
batch of beats. Theoretically this can be done by factor analysis, or the Karhunen—

Loéve transformation; unfortunately, the computation involving raw data is too
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large to be practical. But when the recorded data is efficiently compressed to a
few parameters in the single statistical best basis, the factor analysis (if needed)
can be performed in real time. The deviation of the next few heartbeats from their

" and significant changes can be flagged

predecessors can be computed “on the fly,’
immediately.

In another example, consider a very large three dimensional atmospheric pressure
map, and the problem of calculating the evolution of the pressure. In this case it
is natural to break up the computation as a sum of interactions within different
scales, with some limited interaction between adjacent scales, Such a breakup is
automatic if the pressure map is expressed in the wavelet basis, which in this case
is also the natural choice for compression of the data.

Such algorithms, which first compress a large set of measurements in order to
compute with fewer parameters, can dramatically reduce the time needed to trans-
form and manipulate data. They generalize the classical transform methods, like

FFT, by custom building a fast transform for each specific application, merging

beautifully the technologies of data compression and numerical analysis.
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