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Basis and Convergence Properties of Wavelet Packets

Mladen Victor Wickerhauser

ABSTRACT. Wavelet packets defined by a single filter pair have uncontrolled
size and basis properties, in general. By substituting different filters at different
scales according to a rule, these can be controlled. One can obtain Schauder
bases of uniformly bounded, uniformly compactly supported wavelet packets.
By controlling size and support, one can apply the Carleson—Hunt theorem
to show that certain wavelet packet Fourier series of a continuous function
converges almost everywhere.

1. Exponential Fourier Series

The celebrated theorem of L. Carleson [2], on the convergence of Fourier series,
can be stated as follows:

THEOREM 1.1. If f = f(x) is continuous on the interval [0,1], and

1
Cp = / f<m>ef2ﬂ'inx d.TJ,
0

then ", ¢ €™ converges to f(z) at almost every x in [0,1].

The same conclusion holds for f belonging to the class L? = L?([0, 1]) of square-
integrable functions defined on the interval [0, 1]. No stronger conclusion is possible,
since members of L? are actually equivalence classes of functions that agree almost
everywhere.

Now L? is a complete inner product space, or Hilbert space, with Hermitean in-
ner product (f,g) < fol f(2)g(z) dz and norm | f|l» % (fol |f(2)|? dz)*/?, which
will be written || f|| when there is no risk of confusion. A countable subset {b,,} C L?
is an orthonormal basis, or Hilbert basis, for L? if it satisfies the following three
conditions:

: Normalization: ||b,|| = 1 for all n;

: Orthogonality: (b, bpy) = 0if n #£ m;

: Density: span{b,} is dense in L2
The generalized Fourier coefficient ¢, of f, with respect to an orthonormal ba-
sis {b,}, may be written ¢, = (f,b,), and the generalized Fourier series written
as y . (fibn)by = >, ¢ubn. For any Hilbert basis, there is at least one kind of
convergence:

Research supported by NSF and AFOSR.

@©0000 (copyright holder)



2 MLADEN VICTOR WICKERHAUSER

THEOREM 1.2. If f belongs to L? and {b, : n € Z} is any orthonormal basis
for L?, then ||f — ZngM (fsbn)byn|| tends to 0 as M, N — oo. FEquivalently, the
norms of the series tails || Y, (f,0n)bnll and || >, o _n (f, bn)bnl| must tend to
zero as N — 0o.

This is called L2 norm convergence, and it follows from the Riesz—Fischer the-
orem and Parseval’s theorem. The proof is elementary and may be found, for
example, in [1], pp. 309-311. It does not, however, imply pointwise convergence
even at a single point.

With a bit of effort, one shows that the exponential functions {e, : n € Z}
defined by e, (z) = ¢*™® form an orthonormal basis of L?. Orthonormality can
be shown with the calculus, and density follows from an analysis of the symmetric
partial sum Z‘n‘ <n €n- Thus, the exponential Fourier series converges in L? norm
by Theorem 1.2.

Carleson’s theorem implies that when {b,} = {e,}, convergence occurs not
only in L? norm but also pointwise almost everywhere. Equivalently, the series
tail functions > . v cnen(z) and D -y cpen(z) must tend to zero at almost
every point x, as N — oco. The purpose of this survey is to describe some other
orthonormal bases of L? that have this pointwise almost everywhere convergence
property.

R. Hunt [9] extended Carleson’s argument to show pointwise almost everywhere
convergence for the Fourier series of any f € LP = LP([0, 1]), namely any f whose

def 1 1/p . . . 2
norm || f|l, = (fo |f(x)P dm) is finite for some 1 < p < oc. Like for L?, no

stronger conclusion is possible in any of these classes, since their members are only
defined almost everywhere. Also, since LP with p # 2 is not a Hilbert space, the
notion of orthonormal basis must be replaced. A natural candidate is the Schauder
basis, defined as a countable subset {b,} of the space whose span is dense and
for which 3" a,b, = 0 implies a,, = 0 for all n. The exponentials {e,, : n € Z}
form a Schauder basis for all LP with 1 < p < oo, but some of the generalizations
considered in this article do not.

2. Walsh Functions

Walsh functions are analogues of {e, }, in the sense that they form an orthonor-
mal basis for L? and are indexed by a frequency parameter. They may be defined
recursively, if they are considered to be functions defined on all of R but sup-
ported in [0,1]. Namely, put Wy = 1, the characteristic function of [0,1), and for
n=0,1,2,..., define

(1) Wan(@) = Wn(22) + Wo(22 +1);  Wania(z) = Wi (22) — W (22 + 1).

It is elementary to show that the functions in {W,, : n =0,1,2,...} are uniformly
bounded and uniformly compactly supported in [0, 1], and that they are orthonor-
mal with respect to the L? inner product. To show that span{W, :n =0,1,2,...}
is dense in L?, observe that this span contains the characteristic function of every
dyadic interval [27 Nk, 27N (k + 1)) for every N =0,1,2,... and every 0 < k < 2.
Clearly such characteristic functions are dense in L2 Tt follows that {W,} is an
orthonormal basis for L2. Consequently, Parseval’s theorem applies when {b,} =
{W,}. But Carleson’s result applies, too:
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THEOREM 2.1. If f = f(z) is continuous on the interval [0, 1], then the Walsh
series Y. (f. Wn)W,, converges to f(x) at almost every x in [0, 1].

Furthermore, the result applies to f € L? as well [6, 10, 14].
3. Shannon Functions
For integer n > 0, let S,, = S,,(z) be defined by

_ sin [7(n + 1)(z — 3)] — sin [mn(z — 3)]

2 Sn(x
The Shannon functions are the doubly-indexed set {S,x : n € N; k € Z} defined by
(3) Snk(z) = Sy (x — k).

It may not be obvious, but is nonetheless true, that {S,, : n € N,k € Z} is an
orthonormal basis for L2(R). A short proof is available, using some of the ele-
mentary tools of harmonic analysis. First note that the Fourier integral transforms
v, = S, of Shannon functions have simple formulas. It can be verified by the
calculus and the Fourier inversion theorem that v,(§) = p(£)1(2|¢] — n), where
p(&) = e~™&. Since the absolute value of v, is one on its support, it follows that
J1vn()]dé = [|vn(€)|?dé = 1 for all n. Plancherel’s theorem then implies that
[ISn]| = 1 for all n. Furthermore, writing v, = 8,1, one directly computes that
vk (&) = €28y, (€). Then, because of their nonoverlapping supports, it is clear
that (Vnk, vm;) = 0 for n # m and any k, j € Z. The orthogonality of exponential
functions implies that (v,k,vn;) = 0 if £ # j, and the orthonormality of {S,}
follows by Plancherel’s theorem.

The Riemann-Lebesgue Lemma implies that Shannon functions are uniformly
bounded and continuous. But also, each Shannon function has compactly supported
Fourier integral transform, and so it is band-limited. Such functions, by the Paley-
Wiener theorem, are entire real analytic: they have derivatives of every order at
every point, and are represented everywhere by their Taylor series.

4. The Carleson Operator

The difficult part of Carleson’s theorem is obtaining a bound on the Carleson

operator, which for any orthonormal basis is
def
(4) Lf(z) = sup Z (fy bn)bn ().
N20g<nen

The rest of the proof is straightforward: suppose it has been shown that ||Lf]| <
| f| for some fixed ¢ > 0 and all f € L?. Consider the remainder term after
subtracting a partial sum from f:

fn=1F= > (Fiba)bn = (f bn)bn.
0<n<N n>N

Then Parseval’s theorem implies || fa|| — 0 as N — oo, so ||Lfn]| — 0 as N — oc.
But for each fixed x, the sequence {L fn(z)} decreases as N — oo. Thus Lfy(z) —
0 for almost every x, as N — oo, by the monotone convergence theorem ([1], p.
265). But fn(z) < Lfn(x) at every z, so fy(x) — 0 as N — oo for almost every
x as well, finishing the proof.

M. Lacey and C. Thiele [10] recently gave an interesting alternative proof of
Carleson’s theorem, in which they focused on the integer-valued function Nj(x)
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defined by Lf(z) = Zogn<Nf(z) (f, bn)bp(x). For Walsh series, they were able to
estimate ||Lf]| with a geometric argument.

5. Wavelet Packets

Equation 1 may be generalized as follows: Let h = {h(k) : k € Z} and g =
{g(k) : k € Z} be two finitely-supported sequences, fix the initial functions wq, and
wy in L?(R), and for each integer n > 0 define

(5) won(z) = Y h(R)w 2z — k) = Huw,(2);
k

(6) wana(2) = Y g(K)wa(2e —k) = Gun(2).
k

As before, define wy,(x) = wy,(z—k). The collection of functions {w,, : n € N} will
be an orthonormal basis for L?(R) if ¢ = wg and 1) = w; are the scaling function
and mother wavelet, respectively, of an orthonormal multiresolution analysis of
L*(R), or MRA, and operators H,G are defined by sequences h, g satisfying the
following conditions for all integers n, m:

o >, hMk)h(k +2n) = 26(n);

* 2k 9(k)g(k + 2n) = 25(n);

o S, g(k)h(k +2n) =0

o Y . [h(n+2k)h(m + 2k) + g(n + 2k)g(m + 2k)] = 26(n — m).

Here 6 is the Kronecker symbol; §(0) = 1, but §(n) = 0 if n # 0. Sequences h, g
satisfying these conditions are called orthogonal conjugate quadrature filters.

Walsh functions are obtained by taking h(0) = h(—1) = ¢(0) = —g(-1) =1,
with h(k) = g(k) = 0 for k ¢ {0,—1}, to define H and G, and functions ¢ = 1, and
P = G1.

Shannon functions can also be obtained by this recursion, if the condition that
h and g be finitely supported is removed. Take
sin [Z(k — 2) .

sl g ot b=

k-3

(1) h(k) =

to define H and G, and

sin [71'(3“ — %)] _ . sin [27r(a: -1
(xr—3) (@) m(z

®) o) =

for the initial functions.
Operators H and G act as Fourier multipliers:

Lo(Syin(S) amin(©) = S (Cyin(S),

©) th3n () = 50 (5 )i (5

where mo(&) = Y, h(k)e 2™*¢ and my(€) = >, g(k)e 2™*¢. Functions mg and
my are 1-periodic, and are trigonometric polynomials whenever h and g are finitely
supported.
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In the Walsh case, mg(§) = 1 + 2™ = 2e™€ cos &, and my (&) = 1 — 2™ =
—2ie™* sin ¢, In the Shannon case, one can take

© 2, ifk-— i <E<k+ % for some integer k;
™m, =
0 0, otherwise;

2, ifk+ 1 <¢&<k+ 3 for some integer k;
mi(§) = { e ' : = 2—mo(£).

0, otherwise,

6. Daubechies’ Wavelet Packets

The filters h and g that define the compactly-supported orthonormal wavelets
of 1. Daubechies [5] can be used here. For example, the Daubechies filter of length
4, which produces a scaling function supported in [0, 4] that satisfies ¢ = H¢, and
a mother wavelet also supported in [0, 4] that satisfies ) = G¢, uses

L3 if | = 0 V8 if | = 0;
V3 if = —1; —3=VB i g = 1
(10) h(k) = 3=3 if k= —2; g(k) = ¢ 328 if k= —2;
VB f = -3, 8 k= -3,
0, otherwise; 0, otherwise.

Note that g(k) = (—=1)*h(=3 — k).

For every positive integer N > 1 there is a Daubechies wavelet supported in
[0, 2N] which belongs to the smoothness class C? for d &~ N/5 [5]. Since Daubechies’
wavelets form an orthonormal MRA, the associated wavelet packets {wpi : n €
N,k € Z} form an orthonormal basis for L?(R), and they are just as smooth as
the mother wavelet and scaling function, because the filters are finitely supported.
Unfortunately, though they are smooth, these wavelet packets are not uniformly
bounded. The following is proved in [4]:

THEOREM 6.1. For any orthogonal CQFs (h, g) for which mg(§) #0 on —% <
§ < T, the wavelet packets {w,} satisfy

. 1o N
limsup — (flolls + -+ - + [[tnll1) = oo.

n—oo

In particular, the nonvanishing condition on myq is satisfied by Daubechies’
filters. If in addition mg is nonnegative, then ||, |1 and ||w, || Will be equivalent,
SO

. 1
lim sup — (||wol|ec + <+ + ||wnlleo) = 0.
n—oo N
Thus, such wavelet packets are not bounded on average, as the frequency index
increases.

A refined special case of this result is shown in [13]:

THEOREM 6.2. For Daubechies’ filters of length L = 4 through L = 20, there
erist pmin < 00, C' > 0, and r > 1, all depending on L, such that

[wan 1], > Cr",

for all p > pumin-
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In particular, the theorem holds for p = co. The result depends on a calculation,
and holds for some other well-known CQF's as well. In the L = 4 case, ppin = 2.

There is numerical evidence that the wavelet packets with frequency index
2™ — 1 have the fastest growth as n — oo, while those with frequency index 2" seem
to be uniformly bounded.

It is not known whether Daubechies’ wavelet packets have the almost every-
where convergence property.

7. Nonstationary Wavelet Packets

An integer n the range 0 < n < 27, for integer J > 0, may be written in binary

J
n = E nj27_1,
j=1

where n; € {0,1}. The numbering is chosen so that n; is the least significant
bit and n; is the most significant bit of the J-bit expansion of n. The restriction
2771 < n < 27 implies that ny = 1.

With the definitions Fj ' I and I3 def G, it is possible to write the filter

formulation of wavelet packets:

as

(11) Wy, = Fy, - Fp, Fwo,

where 2771 <n < 27. Alternatively, there is also a multiplier formulation:
. L. ¢ S S g §

(12) Wy (§) = Z—JWO(Q—J)an(?—J)anfl(F) "'mnz(Q_Q)mn1(§>'

M. Nielsen [13] studied two generalizations of this recursive definition.
Let {(h7,g7 : J =1,2,...} be a family of orthogonal CQF pairs. Fix wg, and
for J > 2 and 2771 < n < 27 define nonstationary wavelet packets by

(13) wa(z) = B F]7 - Fy wo(x),

nyTnj_i

or alternatively, in the multiplier formulation, define their Fourier integral trans-
forms by

. S §v 7€ 2 & 1 &
(14) () = ol ) md () -+ 12, (o5)mh, (5)
The superscript indicates which pair of CQFs defines the filter operator or multi-
plier. The idea is to change the filters used to generate wavelet packets as their
frequency increases, for example, to control their growth in L°°.

But one can also redo the entire recursion for each new level. Let

{((thJagJyJ% ceey (hJ’lagJyl)) 2= ]-; 27 e }a

be a family of sequences of orthogonal CQF pairs. Fix wg, and for J > 2 and
2771 <'n < 27 define highly nonstationary wavelet packets by

(15) wn(z) = ELTFRTT - Fl o (x),

or alternatively, in the multiplier formulation, define their Fourier integral trans-
forms by

(16) () = o Sy mi (S mi2( Emid ).
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Here the superscripts indicate which pair of which sequence of CQFs defines the
filter operator or multiplier.

8. Walsh and Shannon Type Wavelet Packets

Suppose that (h”,g”7) is the Walsh CQF pair for all sufficiently large J > Jo.
The resulting wavelet packets are called Walsh-type, and we have the following
theorem due to M. Nielsen [13]:

THEOREM 8.1. Walsh-type wavelet packet series converge pointwise almost ev-
erywhere.

Likewise, if (b7, g”) is the Shannon CQF pair for all sufficiently large J > Jy,
then the resulting wavelet packets are called Shannon-type, and we have another
theorem by M. Nielsen:

THEOREM 8.2. Shannon-type wavelet packet series converge pointwise almost
everywhere.

These theorems are direct consequences of the Carleson Hunt theorem for
Walsh series and Shannon series, since Walsh-type wavelet packets are finite lin-
ear combinations of Walsh functions, while Shannon-type wavelet packets are finite
linear combinations of Shannon functions.

9. Growth Control for Wavelet Packets

One way to control the growth of |wy||, for large p, as n — oo, is to use
nonstationary or highly nonstationary wavelet packets with lengthening filters. One
obtains a uniform bound on ||wy, ||, for example, from a uniform bound on ||wy,]|1,
using the Riemann—Lebesgue lemma and the Fourier inversion theorem: ||wy oo <
il

For values 2 < p < oo, the bound for ||w,]|, follows from the Hausdorff-Young
inequality:

[wnllp < Cllnllg:

where ¢ = p/(p — 1) and the sharp constant [11] is C' = [q%/p%]%

N. Hess-Nielsen [7, 8] originally introduced the idea of building wavelet packet
bases with more than one CQF pair. An original application was to design a
single short CQF pair with the same frequency localization as longer CQFs, given
a desired depth J of wavelet packet decomposition. This resulted in a savings of
approximately half the arithmetic operations in subband decompositions.

A. Cohen and E. Séré [3] showed the following:

THEOREM 9.1. Suppose (h”,g”) is a family of orthogonal CQFs whose length
function L = L(J) satisfies L(.J) > ¢J3¢ for some ¢ > 0 and € > 0. Then the
associated nonstationary wavelet packets {wy,} satisfy

277 (ol + -+ + s 1]l1) < B,
for some B < oo and all J > 0. Thus,
277 (Jwolloo + -+ + lwas 1lloc) < B,

as well.
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M. Nielsen [13] refined this result in the special case where h”’,g” are the
Daubechies orthogonal CQF's of length L = L(.J), where the length function will
be specified later. When highly nonstationary wavelet packets are called for, use
hi % R and g7 def g’ for all j =1,2,...,J. One may suppose that wq is any
scaling function that generates an orthonormal MRA, not necessarily a Daubechies
scaling function. One must suppose, however, that wy is smooth enough so that
[ (&) = O(1/|€]FF€) for some € > 0. One first obtains a basic result, part of which
was also shown in [3]:

THEOREM 9.2. For any length function L = L(J), the nonstationary wavelet
packets derived from {h”, g’} and the highly nonstationary wavelet packets derived
from {h”’3 g73} form an orthonormal basis for L*(R).

The additional properties of Daubechies’” CQFs give a better growth result:

THEOREM 9.3. If the length function satisfies
L(J) > cJ*te

for some ¢ > 0 and ¢ > 0, then the nonstationary wavelet packets derived from
Daubechies’ filters {h”, g’} are uniformly bounded functions.

The support diameter of the nonstationary wavelet packet w,, grows without
bound as n — oo, if L(J) — oco as J — oo. This is overcome, strangely enough, by
backing up and introducing longer filters earlier in the highly nonstationary wavelet
packet algorithm [13]:

THEOREM 9.4. If the length function satisfies
2+ 27

€
cJ < L(J) < JiTe
for some ¢ > 0 and € > 0, and wy has compact support, then the highly nonstation-
ary wavelet packets {w,} derived from Daubechies’ filters {h”, g7} are uniformly
bounded and have uniform compact support in a fized interval independent of n.

10. Wavelet Packets as Schauder Bases

A countable set B = {b,} C LP(R), 1 < p < oo, that has a dense span is called
a Schauder basis if )", a,b, = 0 implies that the coefficient a,, = 0 for all n. In
particular, it means that finite subsets of B must be linearly independent. Every
f € LP has a unique representation f = Y a,(f)b, that converges in norm, and
it is well known that the coefficient functionals {a,,}, which are given by functions
in LY, g =p/(p — 1), must satisfy

(17) sup [[an[q[|bnllp < oo.
n

An orthonormal wavelet packet basis {wg} for L2, derived from an MRA with
somewhat smooth scaling function wg, has a dense span in LP and satisfies a,, =
b, = wy,. Using Theorem 6.2, M. Nielsen showed [13] that

THEOREM 10.1. For Daubechies’ filters of length L = 4 through L = 20, there
erist Pmin < 00, C' > 0, and r > 1, all depending on L, such that

[wan —1]pllwan—1llg — o0

as n — 00, for all p > pmin. Thus these wavelet packets fail to be a Schauder basis
for those LY spaces.
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It is known that Walsh functions are a Schauder basis for LP, all 1 < p < oo,

as are Shannon functions. Using that fact, M. Nielsen showed [13] that Walsh-type
and Shannon-type wavelet packets likewise constitute a Schauder basis for LP.

It is not known whether the nonstationary and highly nonstationary wavelet

packet bases of Theorems 9.3 and 9.4, which are uniformly bounded, give Schauder
bases, as Equation 17 only gives a necessary condition. However, a perturbation
argument applied to periodized Shannon wavelet packets [12] shows that certain
highly nonstationary periodic wavelet packets, which are very close to exponentials,
do constitute a Schauder basis for L”([0, 1]).

(1]
(2]
(3]

[4]

(10]
(11]
(12]
(13]

(14]
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