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Abstract

Wavelet packets are subsets of a multiresolution analysis and derive
many of their properties therefrom. Those defined by a single filter pair
have uncontrolled size and basis properties, in general. By substituting
different filters at different scales according to a rule, these can be con-
trolled. The number of orthonormal bases available in an MRA satisfies
a recursion equation depending on the basis selection method, and some
of these recursions have closed form solutions. Some of these orthonor-
mal bases consist of uniformly bounded, uniformly compactly supported
wavelet packets and are Schauder bases for many Banach spaces. With
controlled size and support, the Carleson—Hunt theorem applies to show
that a wavelet packet Fourier series of a continuous function converges
pointwise almost everywhere.

1 Approximation With Refinable Functions

A sequence of samples s = {s(n) : n € Z} may be regarded as a piecewise
constant function:

fl@) € Y s()i(@—n), teR,

neZz

where 1 is the indicator function of the interval [0,1) C R. If s is square-
summable, namely if s € /2, then f, € L?(R) is square-integrable by the linear-
ity of the integral. The correspondence s +— f; is injective but not surjective.
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Conversely, by the comparison test, any f € L%(R) corresponds to a square-
summable sequence

sf(n) Lof /Rf(:z;)l(:z;—n)dx, n € Z.

This correspondence f +— sy is surjective but not injective.

The integral may also be written (f,1,), putting 1, (z) def 1(z — n) and

using the ordinary inner product in L?(R):

(f.9) & Af(x)g(z)dx.

Note that (1,,,1,,) = 0ifn # m, and ||1,|| = 1 for all n € Z. Thus {1,, : n € Z}
is an orthonormal subset of L2(R). We may define an approzimation space
Vo = span{1,, : n € Z} C L*(R). Those shifted indicator functions 1,, supply
an orthonormal basis for Vg, so the orthogonal projection Py : L2(R) — Vj is
given by

Pof(2) € 3 (£ 1a)1n(@),  fe LX(R).

neZ

If we replace L?(R) with Vg, then f +— s and s — f; are bijections. In fact, they
are inverses of each other. In addition, f € Vg (respectively s € £?) is positive,
monotone, or compactly supported if and only if s (respectively fs) has the
same property. The proofs are elementary, and show that approximations to

functions are interchangeable with sequences of samples.

We may refine V, into V; & {f(272) : f € o} € LA(R). It is immediate

that --- V3 C Vo C V_1 C .-+, as V; consists of piecewise constant functions with
jumps at k27, k € Z. Therefore, UsczVy is dense in L?(R) since it contains all
step functions with jumps at dyadic rationals.

{Vy : J € Z} is the simplest example of a multiresolution analysis, or MRA
[1, 2]. Given any f € L?(R), we may approximate it arbitrarily well in V for
some adequate J, then replace the approximate function with the equivalent
sequence. Since dilations of f by 27 move it from V; to Vj, we may assume
without loss that Pyf € V; provides an adequate degree of approximation.

The function 1 € Vj is refinable: for all x € R,

1(z)=1(22)+ 12z —-1) = L[\/51(2@] + L[\/51(2;1: —1)].
2 V2
This expression may be deduced from the inclusion Vo C V_;. The second form
uses the orthonormal basis vectors of V_;. In general, a refinable function is
a compactly-supported function ¢ € L?(R) satisfying a two-scale refinement
equation for all x € R:

$(x) = > V2h(n)p(2x —n) € He(a), (1)

neZ



where h is a finite sequence of filter coefficients. The Haar-Walsh case has
h(0) = h(1) = 1/v/2, with h(n) = 0 for n ¢ {0,1}.
Integration of both sides of Equation 1 shows that the filter must satisfy

> Oh2k) =Y h(2k+1) = % (2)

ke€Z keZ

If we want {¢,, : n € Z} to be an orthonormal set, where ¢, (x) = ¢p(z —n), we
must have

> " h(k)h(k + 2m) =

{1, ifm =0,
kEZ

0, ifm#0, (3)

for all m € Z. This is the key orthogonality condition on filters [1].

Taking a different point of view, suppose a finite filter h satisfies Equations
2 and 3. We may seek a solution to Equation 1 by iteration. We let ¢° = 1 and
for j > 0 define ¢/ = H¢?~! to get the following:

Theorem 1.1 If ¢7 converges uniformly to a limit function ¢ as j — oo, then
1. ¢ has compact support;
2. ¢ satisfies the two-scale refinement equation Hp = ¢;
3. ¢ is nonzero, integrable, and satisfies [ ¢(x)dr = 1;
4. {¢(x — k) : k € Z} is an orthonormal set in L*(R). O

The proof is straightforward and may be found, for example, in Reference [3],
page 165. Unfortunately, the conditions on h that guarantee uniform conver-
gence are complicated [4]. The prize, however, is a function ¢ that may be
substituted for 1 in the definition of the approximation spaces V; of the MRA.
Many examples are known [5, 1, 6] for which ¢ is smooth and thus gives superior
compact coding of smooth functions in L2.

2 Exponential Fourier Series

The celebrated theorem of L. Carleson [7], on the convergence of Fourier series,
can be stated as follows:

Theorem 2.1 If f = f(x) is continuous on the interval [0, 1], and

1
Cn :/ f(m)efﬁrinz d.%‘,
0

then Y, c,€2™"® converges to f(z) at almost every z in [0,1].

The same conclusion holds for f belonging to the class L? = L2([0,1]) of
square-integrable functions defined on the interval [0, 1]. No stronger conclusion



is possible, since members of L? are actually equivalence classes of functions that
agree almost everywhere.

Now L? is a complete inner product space, or Hilbert space, with Hermitean
inner product (f,g) % fol f(2)g(z)dz and norm ||f]> (fol |f(2)|? dz)'/?,
which will be written ||f|| when there is no risk of confusion. A countable
subset {b,} C L? is an orthonormal basis, or Hilbert basis, for L? if it satisfies
the following three conditions:

Normalization: ||b,|| = 1 for all n;
Orthogonality: (by,bpy) = 0 if n #£ m;
Density: span{b,} is dense in L?.

The generalized Fourier coefficient ¢, of f, with respect to an orthonormal basis
{b,}, may be written ¢, = (f,b,), and the generalized Fourier series written
as y,. (f.bn)b, =, cnby. For any Hilbert basis, there is at least one kind of
convergence:

Theorem 2.2 If f belongs to L? and {b, : n € Z} is any orthonormal basis for
L?, then || f — Zf:;du (f,bn)by|| tends to 0 as M, N — oo. FEquivalently, the
norms of the series tails || Y2, < (f; ba)bnll and || 32, o (f; bn)by|| must tend
to zero as N — oo.

This is called L2 norm convergence, and it follows from the Riesz—Fischer the-
orem and Parseval’s theorem. The proof is elementary and may be found, for
example, in [8], pages 309-311. It does not, however, imply pointwise conver-
gence even at a single point.

With a bit of effort, one shows that the exponential functions {e,, : n € Z}
defined by e, (z) = €*™"® form an orthonormal basis of L?. Orthonormality can
be shown with the calculus, and density follows from an analysis of the sym-
metric partial sum Zlnl <n €n- Thus, the exponential Fourier series converges

in L? norm by Theorem 2.2.

Carleson’s theorem implies that when {b,} = {e,}, convergence occurs not
only in L2 norm but also pointwise almost everywhere. Equivalently, the series
tail functions ) _ n cnen(x) and Yy cpen(2) must tend to zero at almost
every point x, as N — oco. The purpose of this survey is to describe some other
orthonormal bases of L? that have this pointwise almost everywhere convergence
property.

R. Hunt [9] extended Carleson’s argument to show pointwise almost every-
where convergence for the Fourier series of any f € LP = LP([0,1]), namely

def (1 Ve
any f whose norm ||f|, = (fo |f(z)P d:z:) is finite for some 1 < p < oo.

Like for L2, no stronger conclusion is possible in any of these classes, since their
members are only defined almost everywhere. Also, since LP with p # 2 is not
a Hilbert space, the notion of orthonormal basis must be replaced. A natural
candidate is the Schauder basis, defined as a countable subset {b,,} of the space
whose span is dense and for which }° a,b, = 0 implies a, = 0 for all n. The



exponentials {e,, : n € Z} form a Schauder basis for all LP with 1 < p < co, but
some of the generalizations considered in this article do not.

3 Walsh Functions

Walsh functions are analogues of {e, }, in the sense that they form an orthonor-
mal basis for L2 and are indexed by a frequency parameter. They may be
defined recursively, if they are considered to be functions defined on all of R
but supported in [0,1]. Namely, put Wy = 1, the characteristic function of
[0,1), and for n = 0,1,2,..., define

Wan () = W, (2z) + W, (22 4 1); Want1(z) = Wy (22) — Wy (22 4+ 1). (4)

It is elementary to show that the functions in {W,, : n = 0,1,2,...} are uni-
formly bounded and uniformly compactly supported in [0, 1], and that they are
orthonormal with respect to the L? inner product. To show that span{W,,
n=0,1,2,...} is dense in L?, observe that this span contains the characteristic
function of every dyadic interval 27Nk, 27N (k + 1)) for every N = 0,1,2,...
and every 0 < k < 2N. Clearly such characteristic functions are dense in L.
It follows that {W,} is an orthonormal basis for L?. Consequently, Parseval’s
theorem applies when {b,} = {W,}. But Carleson’s result applies, too:

Theorem 3.1 Iff f(z) is continuous on the interval [0, 1], then the Walsh
series Yy (f, Wy)W,, converges to f(x) at almost every x in [0, 1].

Furthermore, the result applies to f € LP as well [10, 11, 12].

4 Shannon Functions
For integer n > 0, let S,, = S, (x) be defined by

S0(z) = sin [m(n + 1)( _(j )] —)sm [mn(z — 3)] . 5)

The Shannon functions are the doubly-indexed set {Sy : n € N; k € Z} defined
by

NI

SIS

Spie(z) = Su(a — k). (6)

It may not be obvious, but is nonetheless true, that {Spx : n € N,k € Z} is
an orthonormal basis for L2(R). A short proof is available, using some of the
elementary tools of harmonic analysis. First note that the Fourier integral trans-
forms v, = Sn of Shannon functions have simple formulas. It can be verified
by the calculus and the Fourier inversion theorem that v, (&) = p(€)1(2/¢| — n),
where p(¢) = e~™%. Since the absolute value of v, is one on its support, it
follows that [ |v,, ()| d¢ = [ |vn(€)|? d€ =1 for all n. Plancherel’s theorem then
implies that [|S,|| = 1 for all n. Furthermore, writing v,; = $,%, one directly



computes that v, (&) = €>™*¢v,(¢). Then, because of their nonoverlapping
supports, it is clear that (vpk, vm;) = 0 for n # m and any k,j € Z. The
orthogonality of exponential functions implies that (vnk,v,;) = 0 if k& # j, and
the orthonormality of {Sy;} follows by Plancherel’s theorem.

The Riemann-Lebesgue Lemma implies that Shannon functions are uni-
formly bounded and continuous. But also, each Shannon function has compactly
supported Fourier integral transform, and so it is band-limited. Such functions,
by the Paley-Wiener theorem, are entire real analytic: they have derivatives
of every order at every point, and are represented everywhere by their Taylor
series.

5 The Carleson Operator

The difficult part of Carleson’s theorem is obtaining a bound on the Carleson
operator, which for any orthonormal basis {b, : n € N} of L?(R) is

Lfz) = sup > (f,bn)bn(@). (7)

The rest of the proof is straightforward: suppose it has been shown that || Lf|| <
c||f|l for some fixed ¢ > 0 and all f € L?. Consider the remainder term after
subtracting a partial sum from f:

In=F= > (fiba)bn =Y (f,0n)bn.

0<n<N n>N

Then Parseval’s theorem implies ||fn] — 0 as N — oo, so ||Lfy]| — 0 as
N — oo. But for each fixed z, the sequence {Lfn(x)} decreases as N — oc.
Thus Lfy(x) — 0 for almost every x, as N — oo, by the monotone convergence
theorem ([8], page 265). But fn(z) < Lfn(z) at every z, so fn(z) — 0 as
N — oo for almost every x as well, finishing the proof.

M. Lacey and C. Thiele [11] recently gave an interesting alternative proof of
Carleson’s theorem, in which they focused on the integer-valued function Ny (z)
defined by Lf(x) = Zogn<Nf(z) (f,bn)bn(x). For Walsh series, they were able

to estimate ||Lf|| with a geometric argument.

6 Wavelet Packets

Equation 4 may be generalized as follows: Let h = {h(k) : kK € Z} and g =
{g9(k) : k € Z} be two finitely-supported sequences, fix the initial functions wq
and w; in L?(R), and for each integer n > 0 define

wan(z) = Y h(kR)w.(2z k) € Huw,(2); (8)
k

waia(@) = Y gk)wn(2r—k) L Gun(a). (9)
k



As before, define wy,,(x) = wy,(z — k). The collection of functions {w,, : n € N}
will be an orthonormal basis for L2(R) if ¢ = wg and ¢ = w; are the scaling
function and mother wavelet, respectively, of an orthonormal multiresolution
analysis of L?(R), or MRA, and operators H,G are defined by sequences h, g
satisfying the following conditions for all integers n, m:

o 3, h(k)h(k + 2n) = 25(n);

o >, 9(k)g(k + 2n) = 26(n);

o 3, g(K)h(k + 2n) = 0;

o S [h(n+ 2k)h(m + 2k) + g(n + 2k)g(m + 2k)] = 28(n — m).

Here ¢ is the Kronecker symbol; §(0) = 1, but d(n) = 0 if n # 0. Sequences
h, g satisfying these conditions are called orthogonal conjugate quadrature filters
(orthogonal CQF).

Walsh functions are obtained by taking h(0) = h(—1) = g(0) = —g(-1) = 1,
with h(k) = g(k) =0 for k ¢ {0,—1}, to define H and G, and functions ¢ = 1,
and ¢ = G1.

Shannon functions can also be obtained by this recursion, if the condition
that h and ¢ be finitely supported is removed. Take

sin [%(k — .

h(k) = T(k —

to define H and G, and

w' Y(z) = sin [27(x — 5)] —sin [r(z — 5)]
m(x—3) ’

¢(z) =

for the initial functions.
Operators H and G act as Fourier multipliers:

[

don(€) = Sro(S)in(S); dbamsa (6) = LSy (S

ml(i)w”(i)’ (12)

1
2
where mg(¢) = 3, h(k)e 2™ *¢ and my(¢) = Y, g(k)e~?™*. Functions my
and my are 1-periodic, and are trigonometric polynomials whenever h and g are
finitely supported.

In the Walsh case, mg(¢) = 1+ €™ = 2™ cos ¢, and m, (€) = 1 — €™ =
—2ie™* sinw¢. In the Shannon case, one can take

. 2, ifk— i <E<k+ i for some integer k;
mo(§) = { 0, otherwise;
2 ifk:—{—i§§<k—|—%f0rsomeinteger k;
= {2 =2 .
ma () { 0, otherwise, mo(¢)



7 Daubechies’ Wavelet Packets

The filters h and g that define the compactly-supported orthonormal wavelets of
I. Daubechies [5] can be used here. For example, the Daubechies filter of length
4, which produces a scaling function supported in [0, 3] that satisfies ¢ = Ho,
and a mother wavelet also supported in [0, 3] that satisfies ¢ = G¢, uses

LB if | = 0; V3 =0,
33 if = 1 3B i k=
h(k) = 3—4\/3, if k= —2; g(k) = 3+4\/§’ if k= —2; (13)
V3 if = —3; —13if g = 3
0, otherwise; 0, otherwise.

Note that g(k) = (—=1)*h(=3 — k).

For every positive integer N > 1 there is a Daubechies wavelet supported
in [0,2N — 1] which belongs to the smoothness class C? for d ~ N/5 [5]. Since
Daubechies’ wavelets form an orthonormal MRA, the associated wavelet packets
{wpr : n € N,k € Z} form an orthonormal basis for L?(R), and they are
just as smooth as the mother wavelet and scaling function, because the filters
are finitely supported. Unfortunately, though they are smooth, these wavelet
packets are not uniformly bounded. The following is proved in [13]:

Theorem 7.1 For any orthogonal CQFs (h,g) for which mo(§) #0 on —3 <
§ < 3, the wavelet packets {wy} satisfy

, 1 )
limsup — ([Jwol[1 + -+ + [[Wn 1) = oo
n—oo T

In particular, the nonvanishing condition on myq is satisfied by Daubechies’ fil-
ters. If in addition myg is nonnegative, then |1, |1 and ||wy||. will be equivalent,
$0

. 1
limsup — (|wolloc + -+« + [[wn|loc) = 0.
n—oo T

Thus, such wavelet packets are not bounded on average, as the frequency index
increases.
A refined special case of this result is shown in [14]:

Theorem 7.2 For Daubechies’ filters of length L = 4 through L = 20, there
ezist pmin < 00, C' >0, and r > 1, all depending on L, such that

lwan 1]l > Cr",

for all p > pmin-

In particular, the theorem holds for p = co. The result depends on a calculation,
and holds for some other well-known CQF's as well. In the L = 4 case, puin = 2.
There is numerical evidence that the wavelet packets with frequency index
2" — 1 have the fastest growth as n — oo, while those with frequency index 2"
seem to be uniformly bounded.
It is not known whether Daubechies’ wavelet packets have the almost every-
where convergence property.



8 Counting Wavelet Packet Bases

Suppose that (h, g) is an orthogonal CQF pair derived from an MRA, and let
{wp :n =0,1,...} € L2(R) be the resulting wavelet packets. We may rescale
and shift each of them to define

Wnsp () def 27524, (275t — p),

a function with nominal scale 2%, s € Z, and nominal position p € Z. The
collection {w,sp : n € Nys € Z,p € Z} C L*(R) is an overcomplete set with
many subsets constituting orthonormal bases of L?(R) and its subspaces [15].

Among these subsets, a graph basis of wavelet packets corresponds to {wy,sp :
0<n<2/;5s=s5(n),0<s<J;pe Z}, where the function s is a constant on
intervals of the form [k27, (k + 1)27), with 0 < j < J and appropriate k. These
functions form an orthonormal basis of Vp = span{wg(x — p) : p € Z}, with the
parameter J giving the depth of decomposition.

The number of graph bases with depth J or less is the number of ways we
may decompose the interval [0,27) into subintervals of the form [k27, (k + 1)27)
with 0 < j < J and appropriate k € N. Equivalently, it is the number of ways
to partition [0, 1) C R using dyadic rationals with denominator at most 27. We
divide the points k27 by 27 to obtain the partition of [0, 1).

Denote the number of graph bases to depth J by B;. Then By =1, By = 2,
and for all J > 1 we have

By=DB% | +1, (14)

since a partition of [0, 1) either has a single element [0, 1), or else consists of two
independent partitions of [0, %) and [% 1) to depth J — 1 each. The recursion
in Equation 14 has been studied in [16] and is known to have the solution

BJZ{(J?JJ, J=0,1,2,... (15)

where C = 1.502837 ... is a constant given by

— 1 By,
C =exp (ZﬁlogBkl>. (16)
k=1

The easy estimate By > 22~ = (v/2)2’, which we get from observing that
By > 33—17 shows that Bj increases rapidly with J. The sum in the expres-
sion for C' thus converges very rapidly, and just a few terms give an accurate
approximation.

For b-band wavelet packet decompositions to depth J, as described in Ref-
erence [17], the number of graph bases is governed by the recursion

D;=D% | 41, J=1,2..., (17)

with initial condition Dy = 1. Another easy estimate like the one above shows

that Dy > Qbel, but there are better estimates and a formula analogous to
Equations 15 and 16.



For Haar-Walsh filters, there are also double tree decompositions ([18], pages
256 and 342). These give bases that are more general and thus more numerous
than graph bases. The count of bases satisfies a rapidly increasing recursion
[19] similar to Equation 17.

Separable isotropic d-dimensional wavelet packet decompositions to depth J
are likewise counted by Equation 17, using b = 2¢. There are also anisotropic
and mixed isotropic/anisotropic multidimensional wavelet packet decomposi-
tions ([18], page 308) whose enumerations give rise to other recursions [20].

9 Nonstationary Wavelet Packets

An integer n in the range 0 < n < 27, for integer J > 0, may be written in

binary as
J
j—1
nzg n;2 ",
j=1

where n; € {0,1}. The numbering is chosen so that n; is the least significant
bit and n s is the most significant bit of the J-bit expansion of n. The restriction
27-1 <n < 27 implies that ny = 1.

With the definitions Fj 2 1 and I3 def G, it is possible to write the filter
formulation of wavelet packets:

Wy, = Fpy Foy -+ By wo, (18)
where 2771 <n < 27. Alternatively, there is also a multiplier formulation:

n(€) = 5707V, (o i, () - (5, (). (19)

) an( 22 2

M. Nielsen [14] studied two generalizations of this recursive definition.
Let {(h7,g7 : J =1,2,...} be a family of orthogonal CQF pairs. Fix wo,
and for J > 2 and 277! < n < 27 define nonstationary wavelet packets by

wp () = FélF,f2 e F,{on(x), (20)

or alternatively, in the multiplier formulation, define their Fourier integral trans-

forms by
£y 7€ 2 &y 1§
Z—J)mnj(Z—J)"'mnz(ﬁ)mm(g)- (21)
The superscript indicates which pair of CQF's defines the filter operator or mul-
tiplier. The idea is to change the filters used to generate wavelet packets as
their frequency increases, for example, to control their growth in L.
But one can also redo the entire recursion for each new level. Let

{((hJ’JagJJ)a (RS (hJ’lagJ’l)) 2= ]-7 27 . '}a

() = g

10



be a family of sequences of orthogonal CQF pairs. Fix wg, and for J > 2 and
27-1 < n < 27 define highly nonstationary wavelet packets by

wn(x) = FrLz]ilFrLz]f"'Fq{}JwO(I)a (22)
or alternatively, in the multiplier formulation, define their Fourier integral trans-

forms by
. 1 S S S S
(@) = () mis (57) - il S)mil(5). (23)
Here the superscripts indicate which pair of which sequence of CQFs defines the
filter operator or multiplier.

10 Walsh and Shannon Type Wavelet Packets

Suppose that (h7, g7) is the Walsh CQF pair for all sufficiently large J > Jq.
The resulting wavelet packets are called Walsh-type, and we have the following
theorem due to M. Nielsen [14]:

Theorem 10.1 Walsh-type wavelet packet series converge pointwise almost ev-
erywhere.

Likewise, if (b7, g7) is the Shannon CQF pair for all sufficiently large J > Jo,
then the resulting wavelet packets are called Shannon-type, and we have another
theorem by M. Nielsen:

Theorem 10.2 Shannon-type wavelet packet series converge pointwise almost
everywhere.

These theorems are direct consequences of the Carleson—Hunt theorem for
Walsh series and Shannon series. Generalizing a result of Y. Meyer [21], one
shows that for each Walsh-type wavelet packet basis and each 1 < p < o0,
there is an isomorphism of LP that maps the basis onto Walsh functions. The
LP boundedness of the Carleson operator follows. Similarly, each Shannon-type
wavelet packet basis is an LP isomorphic image of the Shannon basis functions.

11 Growth Control for Wavelet Packets

One way to control the growth of ||wyl|, for large p, as n — oo, is to use
nonstationary or highly nonstationary wavelet packets with lengthening filters.
One obtains a uniform bound on ||wy, ||, for example, from a uniform bound on
||y ]|1, using the Riemann Lebesgue lemma and the Fourier inversion theorem:
lvnlloc < llinr-

For values 2 < p < oo, the bound for |wy||, follows from the Hausdorff~
Young inequality:

lwally < Cllialy

11



where ¢ = p/(p — 1) and the sharp constant [22] is C' = [q%/p%}%

N. Hess-Nielsen [23, 24] originally introduced the idea of building wavelet
packet bases with more than one CQF pair. An original application was to
design a single short CQF pair with the same frequency localization as longer
CQFs, given a desired depth J of wavelet packet decomposition. This resulted
in a savings of approximately half the arithmetic operations in subband decom-
positions.

A. Cohen and E. Séré [25] showed the following:

Theorem 11.1 Suppose (h”,g”) is a family of orthogonal CQFs whose length
function L = L(J) satisfies L(J) > c.J3*€ for some ¢ > 0 and € > 0. Then the
associated nonstationary wavelet packets {w,} satisfy

277 (ldollx + -+ + a7 1]11) < B,
for some B < oo and all J > 0. Thus,

277 (lwollos + -+ + lwas 1]l0) < B,
as well.

M. Nielsen [14] refined this result in the special case where h”, g7 are the
Daubechies orthogonal CQFs of length L = L(.J), where the length function will

be specified later. When highly nonstationary wavelet packets are called for,

use h7 ¥ BT and g’ def g’ for all j = 1,2,...,.J. One may suppose that

wq is any scaling function that generates an orthonormal MRA, not necessarily
a Daubechies scaling function. One must suppose, however, that wg is smooth
enough so that | (€)] = O(1/|¢[*1€) for some € > 0. One first obtains a basic
result, part of which was also shown in [25]:

Theorem 11.2 For any length function L = L(J), the nonstationary wave-
let packets derived from {h”’,g”} and the highly nonstationary wavelet packets
derived from {h”’J, g7} form an orthonormal basis for L2(R).

The additional properties of Daubechies’” CQF's give a better growth result:
Theorem 11.3 If the length function satisfies
L(J) > eJ*te

for some ¢ > 0 and € > 0, then the nonstationary wavelet packets derived from
Daubechies’ filters {h”, g’} are uniformly bounded functions.

The support diameter of the nonstationary wavelet packet w,, grows without
bound as n — oo, if L(J) — oo as J — oo. This is overcome, strangely enough,
by backing up and introducing longer filters earlier in the highly nonstationary
wavelet packet algorithm [14]:

12



Theorem 11.4 If the length function satisfies

2]

2+€

for some ¢ > 0 and € > 0, and wi has compact support, then the highly non-
stationary wavelet packets {wy} derived from Daubechies’ filters {h”7, g7} are
uniformly bounded and have uniform compact support in a fized interval inde-
pendent of n.

12 Wavelet Packets as Schauder Bases

A countable set B = {b,} C LP(R), 1 < p < o0, that has a dense span is called
a Schauder basis if Zn anb, = 0 implies that the coefficient a,, = 0 for all n.
In particular, it means that finite subsets of B must be linearly independent.
Every f € LP has a unique representation f = > a,(f)b, that converges in
norm, and it is well known that the coefficient functionals {a,,}, which are given
by functions in L4, ¢ = p/(p — 1), must satisfy

sup [[an|lq[|bn|lp, < oo (24)

An orthonormal basis for L? consisting of compactly-supported wavelet packets
{wy,}, derived from an MRA with somewhat smooth scaling function wq, has a
dense span in LP and satisfies a,, = b, = w,. Using Theorem 7.2, M. Nielsen
showed [14] that

Theorem 12.1 For Daubechies’ filters of length L = 4 through L = 20, there
ezist pmin < 00, C'> 0, and r > 1, all depending on L, such that

|wan 1 ||pllwan —1]lg — o0

as n — oo, for all p > pmin. Thus these wavelet packets fail to be a Schauder
basis for those LP spaces.

It is known that Walsh functions are a Schauder basis for LP, all 1 < p < oo,
as are Shannon functions. Using that fact, M. Nielsen showed [14] that Walsh-
type and Shannon-type wavelet packets likewise constitute a Schauder basis for
LP.

It is not known whether the nonstationary and highly nonstationary wavelet
packet bases of Theorems 11.3 and 11.4, which are uniformly bounded, give
Schauder bases, as Equation 24 only gives a necessary condition. However,
a perturbation argument applied to periodized Shannon wavelet packets [26]
shows that certain highly nonstationary periodic wavelet packets, which are
very close to exponentials, do constitute a Schauder basis for LP(]0, 1]).
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