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1 Introduction

In this note, we apply an algorithm, based on the local trigonometric orthonormal basis and the
adapted local trigonometric transform, to decompose digitized speech signals into orthogonal
elementary waveforms. This algorithm leads to a local time-frequency representation which is
well adapted to analysis-synthesis, compression and segmentation. We present some applications
and experimental results for signal compression and automatic voiced-unvoiced segmentation.
Furthermore, compression provides a simplified decomposition which appears to be useful for
detecting fundamental frequencies and characterizing formants.

We begin with a clean, digitized speech signal. The signal is decomposed into a local trigono-
metric orthonormal basis which consists of cosines or sines multiplied by smooth cutoff functions.
This basis is described by R. Coifman and Y. Meyer [3] and by H. Malvar [7]. We describe and
then apply to speech processing an adapted version of this lapped orthogonal transform, which
includes a “best basis method” obtained by entropy minimization [4]. This algorithm produces
an adapted orthogonal elementary waveform decomposition, which is a local spectral represen-
tation for the speech signal. Roughly speaking, we get a windowed cosine transform of the
signal, with the window size well adapted to the spectrum it contains. The associated time-
partition, or choice of windows, appears to be useful for segmentation into voiced and unvoiced
portions, which can be recognized by the number of peaks or “theoretical dimension” of the
local spectrum. The time-partition provides short segments where there is fast frequency varia-
tion and long segments where there is slow frequency variation. The spectral representation is
invertible and allows both perfect reconstruction (analysis-synthesis) and lossy approximation
(compression).

We introduce a formant representation as follows. We examine the spectrum in each segment
and locate the centers of mass for the top few peaks. Keeping just the top few peaks, or just a
few of the most energetic waveform components, is a kind of compression, and computing the
centers of mass of the peaks is a drastic reduction of the amount of data to be used for subsequent
recognition. The formant representation is the resulting set of locally constant spectral lines, or
step function approximations to the time-frequency function.
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Figure 1: A basis function for the lapped orthogonal transform

For comparison and to suggest variations of this algorithm, we point out that other elemen-
tary waveform representations can be used in similar adapted decompositions and segmentations.
Some of these are described in references [5], [6] and [9].

2 Algorithm description

We recall briefly the local cosine transform [1]. Let us consider a partition of the line:
rR=J I,
j€z

with I; = [aj,aj4+1), such that the width of the intervals is never less than a fixed positive
number: a;11 —a; > € > 0 for all j € Z. We define the following cutoff functions:
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with B(t) = sin[F(1+sint)] and 0 < r < e. This function, adjusted to the interval [0, 1], is the
envelope of the curve displayed in Fig.1. The set of functions:

W (t) = bj(t)ﬁcosi(k—}—%



Figure 2: Lapped orthogonal basis functions on adjacent intervals

with j € Z and k € N, is an orthonormal basis for L?(R). Consequently, each signal S(t) €
L%(R) can be written in terms of the functions ¥}:

Sty =Y ui()

with
. . V2 T 1
= (S0, W)(1) = —= [ SO;(t) cos T (k +)(t — aj) dt (1
NI 1l 2

A superposition of these functions may be depicted by a sequence of adjacent envelopes or
windows, with vertical lines drawn between the nominal window boundaries. This is done in
Fig.2.

It is possible to compute several local cosine transforms all at once, recursively subdividing
the intervals into halves. The basis functions on each subinterval are the orthogonal direct sum
of the basis functions on its left and right halves, and this orthogonality propagates up through
the multiple levels of the binary “family tree” in Fig.3.
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Figure 3: Several lapped orthogonal transforms computed all at once
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Figure 4: 3-level decomposition into segments by “folding” and restriction

The inner products in Eq.(1) can be computed using a standard fast discrete cosine transform,
after a reliminary “folding” step described in [10]. This “folding” splits S(t) into a set of local
finite energy signals S;(t) € L*(I;), j € Z, such that applying a standard discrete cosine
transform to the coefficients in S;(t) is equivalent to computing all inner products with the
functions \Ilfc In other words,

8;(t) = 3_ f, 441 2)
kez
with _ .
¢ = (S;(t), 43,(1)) (3)
where
; \/i s 1
Pr(t) = 7 cos @(k +3)(t —aj)xz, (1) (4)

Discrete sampled cosines at half-integer frequencies are the basis functions of the “DCT-IV”
transform. The characteristic function xy, (t) is equal to 1 if ¢t € I; and 0 otherwise. If S(t) is a
sampled signal with ¢ € {0,1,2,...,2Y — 1}, then we can “fold” first at the boundaries which
gives SO(t) and next recursively at the middle points in a few levels. Therefore, this “folding”
splits each function S4(t) € L2(If) into Sﬁ;’l(t) € LQ(IHI) and Sﬁﬁl( ) € LQ(Igﬁl) as seen in
Fig.4. We can calculate the standard DCT-IV transform [8] for each Sf which gives the spectral
tree in Fig.5.

The orthogonality of the lapped orthogonal transform implies the following energy conser-
vation identities:

def
ISI7 = 18°112 = 187 = ZIISJII2 [EAE AT

If {x}} belongs to 12 and I?logI? then we can define the spectral entropy of {x}} to be
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Figure 5: 3-level decomposition into local cosine transforms

with A\(z) = — Z |z |2 log |z |?. Then exp(H (z)) = ||| exp( ﬂ\zﬁ)) may be called the theoretical

k
dimension of the sequence {z}.
The adapted local spectrum af over the time interval I]‘f is defined recursively in terms of the

spectra on subintervals of I f, by the following formula:

CI/]':

, d if  H(d) < H(a5") + H(a5H})),
otherwise.
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See [4] for a detailed description of this algorithm. If we begin with aﬁ/[ = dﬁ/[ at some deepest
decomposition level M, then a} will contain the lapped orthogonal transform coefficients with
respect to that division into intervals I f which minimizes the total spectral entropy. We will call
the chosen division into intervals the adapted (entropy-minimizing) time-partition for the given
signal.

3 Applications to Speech Processing

In this section we suppose that our signal S = S(¢) is speech sampled over a total time interval
[0,T], and that we have calculated its adapted time-partition:

0.7= {J I
0<j<N

The “folding” of S at the boundaries between subintervals can be viewed as a segmentation of
the function:

S(t) — (So(t), S1(t), ..., Sn—1(2)).
Using Egs.(2), (3) and (4) each S;(t) can be decomposed into a set of orthogonal elementary

waveforms: o
Si)= Y < #),
0§k<nj



with n; as number of samples in I; and with (:,7C as spectral coefficients computed via the standard
DCT-1V transform [8]. The analysis-synthesis may be represented by the following scheme:

DCT-IV DCT-IV
So(t) ——m & — o(t)
DCT-IV DCT-IV
Sit) — o —— 1(t)
fold . . ) unfold
—_— : : : — S(%).

DCT-IV  , , DCTIV
SN_l(t) —_— Cp _— SN_l(t)

Each discrete local cosine coefficient C}C gives the amplitude of an elementary orthogonal

waveform component. This elementary waveform’s period is Ty = 3}—2 with wy = |}r7 (k+ 1),
therefore its frequency is
1
Wk k+ 5
F = — = 6
T or T 2L (6)

The maximum frequency that we can distinguish is about half the sampling rate n;/|I;|, and
thus .

n; + 2

0= Fi< 2|15

If we start with a signal that is sampled uniformly over the entire interval [0, 7], then n; will be
proportional to |I;| and each interval will have approximately the same top frequency. However,
since the shorter intervals have fewer coeflicients, their frequency resolution will be lower. In our
experiments, the signal was sampled uniformly at 8 kHz so the maximum detectable frequency
was about 4 kHz. The time subintervals ranged in length down to 32 samples, or 4 ms.

A voiced speech signal is produced by regular glottal excitation. Its fundamental frequency is
typically in the range 140-250Hz for a female speaker and 100-150Hz for a male speaker [2]. The
frequency Fj, = 250Hz corresponds to about £ = n;/16. Using this estimate, we shall introduce
a criterion to distinguish voiced from unvoiced speech segments. Define first the frequency index
ko of the strongest spectral component:

|cko | = Olggfnl%l-

We will call Fy, the first fundamental frequency of the segment.We will say that the signal
segment S;(t) over I; is voiced if kg < n/16 and unvoiced if

ko > n/16. (7)

For more sophisticated recognition problems, we may wish to use more than one frequency
to describe the spectrum in a segment. Having found a first fundamental frequency, we suppress
all the coefficients at its nearest neighbor frequencies and then look for the strongest survivor.
Consider for example a signal S;(t) over I; with two fundamental frequencies Fj,, and Fj,. To
compute Fy, and Fy, we first calculate ko from the last equality, set c; equal to zero if |k—ko| < T
for a preset threshold 7" (i.e., in a neighborhood of k), and then deduce k; from

ek, | = o?:?‘fn|c’“|'



Finally the two frequencies are obtained via Eq.(6). This procedure may be iterated as long
as there are nonzero coefficients c;. We can force the procedure to terminate earlier by using
only the top a per cent of the spectrum, so that relatively small peaks will not show up as
fundamental frequencies in any segment. Then T and a are parameters of the algorithm, which
can be set empirically, but which should depend upon on the signal-to-noise ratio of the signal.
Our experiments typically used a =5 and T'=5 or a = 10 and T = 10.

The coefficients ¢ with |k — k| < T are associated to the frequency Fj, and contain some
extra information. We can average this information into the parameter we extract. Consider
the following notion of center of frequency associated to each fundamental frequency Fj,;:

M k=k;+T k=k;+T
Wi = #, where FE; = Z ci and M; = Z kcz fori=0,1,2,....
L k=k;—T k=k;—T

In this way, for each fundamental frequency Fj, we can describe its (locally constant) formants
with the pair {u;, E;} of {center-of-frequency, energy-at-the-frequency}. The formant represen-
tation for a speech signal consists of a list of intervals together with the top few most energetic
locally constant formants for each interval. This data can be used for recognition.

4  Experimental results

We consider the signal corresponding to the first second of the French sentence : “Des gens
se sont levés dans les tribunes” uttered by a female speaker. The traditional sonogram of this
phrase may be obtained as two compressed PostScript files (sonol.eps.Z and sono2.eps.Z)
from the archive site wuarchive.wustl.edu. Fig.6 shows the original signal on the top part, the
local spectrum which minimizes entropy in the center and the reconstructed signal at the bottom.
The reconstructed signal is obtained from the top 5% of the spectrum inside each subinterval.
The adapted time-partition associated to the local spectrum described in section 2 is drawn with
vertical lines.

After finding the adapted time-partition and testing whether the first fundamental frequency
in each window is below the cutoff n;/16 of Eq.(7). We then merge the adjacent voiced segments
and the adjacent unvoiced segments to leave only the windows of Fig.7. This highlights just the
transitions between voiced and unvoiced segments.

We note that transitions are found where we expect them. We extracted the time-partitions
and listened to the sounds they contain. This gave us the labels in Fig.7, namely /d/ — /e/ —
/g — Jen/ — [s/ — Je/ — /s/. These are alternating voiced and unvoiced segments.

A more sophisticated criterion may be applied to merge adjacent voiced segments which have
sufficiently similar formants. This can be done by thresholding with a low-dimensional metric,
since the formant representation of each segment has only 4 or 5 parameters in practice. Such a
“phoneme recognition” algorithm needs to be well engineered and would probably require some
understanding of the speech content to resolve ambiguities, so it is beyond the scope of this
communication to discuss it. The present algorithm may be considered as a “front end” to a
speech recognition device, intended to simplify the representation of speech down to a few most
relevant parameters.

Remark.
On the horizontal axis of Fig.6, we must simultaneously display the sample number, the time
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Figure 6: Entropy-minimizing local spectral decomposition
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Figure 7: Adapted time-partition after voiced-unvoiced recognition and merging



in milliseconds, the locations of the window boundaries, and the local frequencies within each
window. We solve this problem by not using any labels at all. On the topmost and bottommost
traces, the horizontal axis represents time. All three traces are intersected by vertical lines
indicating the window boundaries, or the endpoints of the intervals I; in the adapted time-
partition. Within each window I, position along the horizontal axis of the middle trace of Fig.6
gives the frequency number n;, which must be scaled by I; to give the actual frequency. Thus
the middle trace is mostly useful for counting the number of formants and gauging their relative
strengths and frequencies. This style of presentation is due to Xiang Fang; similar graphs may
be seen in [4].
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