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Abstract

Wavelet and wavelet packet transforms are presently used for image compression and denoising.
There has been recent progress on three fronts: implementing multiplication operations in wavelet bases,
estimating compressibility by wavelet packet transform coding, and designing wavelet packets to control
frequency spreading and pointwise convergence. Some open problems are mentioned.
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1 Introduction

Wavelets and wavelet packets are special functions having three useful properties:

e They are almost as well localized in both time and frequency as the Heisenberg uncertainty inequality
allows;

e They form orthogonal bases;

e They come equipped with fast, well-conditioned transforms: to compute N expansion coefficients of a
function costs only O(N log N) operations.

A simple almost-example of wavelets, which lacks only adequate frequency localization, is the Haar basis
[13] generated by the compactly-supported “mother” function ¢ = ¢ (z) = 1(2z) — 1(2x — 1), where 1(z)
is the characteristic or indicator function of the interval [0,1). The linear span of the following orthogonal
unit vectors is dense in L?(R):
def

{tpsn(x) = 275/21/1(2*% —n):s,n€Z}. (1)

This generalizes to Walsh functions, which are almost wavelet packets. Fix the initial functions wy = 1 and
wy = in L?(R), and for each integer n > 0 define

Wan () = wp,(22) + wy (22 — 1); Want1(x) = wp(22) — w, (22 — 1).

Putting wy, x(z) def wp (2 — k) gives an orthonormal basis {w, x : n € N,k € Z} for L*(R).
Daubechies’ famous smooth generalization [10] of Haar’s basis is constructed using the two-scale equations:

$(z) =Y V262 — k) € Ho(z);  w() =Y g V2022 — k) € Go(z). (2)
k k



where h = {hy, : k € Z} and g, = (—1)*"*hy_}, are finitely-supported sequences satisfying the following
conditions for all integers n, m:

Z hi hitan = 0(n); Z [ t2k P2k + G2k Gma2k] = 6(n —m). (3)
k k

Here § is the Kronecker symbol; 6(0) = 1, but 6(n) = 0 if n # 0. Sequences h, g satisfying these conditions
are called (orthogonal) conjugate quadrature filters, or CQFs. One nontrivial example is the “Coifman 12”
(C12) filters [28]. Here h, =0 if k < 0 or k > 12, and {hy : 0 < k < 12} is the following table of values:

{1.6387336463179785 x 1072, —4.1464936781966485 x 1072, —6.7372554722299874 x 10~ 2,
3.8611006682309290 x 10~ 1, 8.1272363544960613 x 1071, 4.1700518442377760 x 1071,

—7.6488599078264594 x 1072, —5.9434418646471240 x 1072, 2.3680171946876750 x 1072, (4)
5.6114348193659885 x 1073,  —1.8232088709100992 x 1073, —7.2054944536811512 x 104}

The conjugate filter is g, = (—1)1~%hy; 1, shifted by 12, so that like A it is nonzero only at indices 0,...,11.
Similarly, wavelet packets are smooth generalized Walsh functions. Let wy = ¢ and w; = 1 be the scaling
function and mother wavelet, respectively, of an orthonormal wavelet basis, with operators H, G defined by

CQFs h, g, and put
Wan () = Hwy (), Wan+1(7) = Gun (@), (5)

for each n = 1,2,.... Shannon wavelets and wavelet packets can also be obtained by this recursion, if the
condition that h and g be finitely supported is removed. Take

R ©)
to define H and G, and
o) — sin [W(x - %)] _ o) — sin [27r(x — %) — sin [’K({L‘ - %)]
o) = T vl i , ")

for the initial functions.

This overview paper will describe recent progress and open problems in four areas: detection of singu-
larities in images, multiplication of functions given their wavelet aproximations; estimation of source coding
efficiency, or compressibility, from wavelet packet coefficient distributions; and control of frequency spreading
and convergence in wavelet packet bases.

2 Detecting Edge-like Singularities in Images

Many edge detection algorithms are known, broadly separated into local operations, such as discrete Laplacian
or Sobel difference filtering, and global operations such as template matching that recognizes edge-like groups
of pixels. A local operation based on approximate differentiation, either by finite differences as in the Sobel
detector, or after transformation as in the Fourier and wavelet methods, assigns a recognizably large value at
singular points of the image, and a small value at smooth points. It typically produces too many candidate
edge points, which must then be screened for membership along some line or curve by a subsequent global
operation. Candidate edge points are especially overabundant in noisy images.

This situation may be improved if we introduce a local operation that produces a large value at a
point only if it and a few lined-up neighbors are singular points. Then both single-point singularites and
nonsingular points of the image will produce small values. This will reduce the number of candidates to be
checked by the global follow-up, especially in noisy images. The finer local step has complexity comparable
to filtering or transformation, but the global part’s complexity is reduced due to the smaller number of false
edge points.

It is a classical observation that whenever a function is not smooth at some point, then the power in
its Fourier transform localized near that point will be slowly decreasing at high frequencies. But then, if



the singularity has a direction, such as the normal direction to an edge discontinuity, the decrease will be
particularly slow in that direction. This slow decrease creates a large variance in the slow direction, if we
treat the local Fourier power spectrum as a probability density. By contrast, the variance in the other
directions, in which the Fourier transform decreases rapidly, will be smaller. These variances are the two
eigenvalues of the 2 x 2 autocovariance matrix, or equivalently the second-moment matrix, of the localized
Fourier power spectrum.

One new technique, introduced in [7], is to recognize the edge-like nonsmooth points of a function by
the differences between these two eigenvalues. The ratio or difference of the eigenvalues, in the limit as the
localization shrinks to the point of interest in the continuum case, give the “edginess” of a function, with
bigger differences or ratios giving more “edginess.” Furthermore, the eigenvector of the larger eigenvalue
will be normal to the edge, when such a normal exists.

The eigenvalues might be the same because they are small and equal, or large and equal. The first case
arises at a point of smoothness, the second at a point singularity. Our technique assigns low “edginess” in
both cases, and therefore differs from the differentiation-based edge detectors. Drawing a conclusion from
two eigenvalues specializes our earlier work, in which we estimated the local rank of a complicated function
from the number of relatively large eigenvalues of the autocovariance matrix.

To get localized information on the singularities of a function f : R? — R, we will multiply it by a
smooth cutoff function, or “bump,” concentrated around the point of interest. This bump should be radial,
to avoid introducing directional bias:

Definition 1 Fiz a nonzero radial function g : R> — R in the Schwartz class, centered at the origin, and
fix € > 0. Then for each polynomially bounded function f : R?> — R, and each point 2° € R?, define the
dual local autocovariance matrix of f at 2% to be the 2 x 2 matriz

— 2
Eealfie%)s = [ s©| de igeqny,

B(0,1/€
_ .0
where ge(§) = g (£ z )

€

&
)

By these assumptions, gf is integrable, so ﬁ is bounded and continuous and the matrix coefficients are well
d/eﬁned. It is the real, symmetric second moment matrix of the unnormalized probability density function
lge fI2. If f is nonzero in a neighborhood of 2, then the matrix will be positive definite. Our technique is
to use differences and ratios of its eigenvalues to define the “edginess” of the function f, at the point z°.

The dual local autocovariance matrix can also be defined for certain singular measures and distributions.
For example, let f be the Dirac delta measure supported at y°, and let g. be centered at 2% as in Definition
1. Then [gef(€)]? = |ge(y°)]?, which tends to 0+ as e — 0 if 2 # 4°, but remains constantly 1 as e — 0
if 29 = y°. In either case, E. ,(f;2°) tends to a multiple of the identity as e — 0, so both the ratio and
the normalized difference of the eigenvalues is everywhere the same in the limit. Hence, either definition of
edginess ignores point singularities.

The main result is that edge-like singularities are recognizable:

Theorem 1 Suppose D C R? is a domain with a smooth boundary, 2° € 0D, and g : R? — R is a nonzero
radial Schwartz function. Let H be either half-plane defined by the line tangent to OD at z°. If we denote
the eigenvalues of Ee 4(1p;aY) by Ai(e) and A2(€), then lim(%?rf [A1(e) — Aa(e)| > 0.

The boundary smoothness assumption in Theorem 1 is not crucial. We can prove similar results for rougher
0D, using the weaker Morrey-Campanato regularity assumption [17, 8].

On the other hand, at points where f is differentiable, the eigenvalues of its dual local autocovariance
matrix are equal:

Theorem 2 Suppose that f : R? — R is differentiable at 2°. Then for any smooth radial function g : R? —
R of compact support, the matriz E. 4(f; 20) converges to a multiple of the 2 x 2 identity matriz, as ¢ — 0.



The converse to Theorem 2 is false: even if lime .ot |Ee 4(f;2°)| is a multiple of the identity, we cannot
conclude that f is differentiable at z°, or even continuous. Sufficient symmetry can masquerade as smooth-
ness, as the following example shows. Let f(x) = 1, (x1)1(x2), where 1 is the characteristic function
of RT, and fix g(z) = exp(—m|z|?) as before. Then, after some straightforward calculations, we discover
that E. 4(f;0) is a positive multiple of the identity, so A1(€) = A2(€) = XA > 0 for every ¢, even though f is
discontinuous at 0.

To calculate the autocovariance matrix in the discrete sampled case, we use the discrete Fourier transform
on N real samples {f(n) : 0 <n < N}, normalized as follows:

N—-1

fk) =" exp (2m?§\7;) f(n), keBy= {N, N} .

272
n=0
If only the first ¢ < N samples of f are nonzero, then the sum reduces to the smaller range {0,1,...,¢—1}.
Thus, the squared absolute value of f(k), when f is real-valued, is

q—1 g—1

=y Z exp ( 27m%> f(n)f(n'), k € By.

n=0n’=

The r-th moment of |f(k)[? is therefore
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The innermost sum in k is a function of the integer n — n’/. Except for a factor of N"*!, it is a Riemann
approximation to the integral

1
3
pr(n) = / x" exp(—2minx) dz,
3

evaluated at n <« n — n’/, whose easily-computed values we shall use instead. Evidently ug(n) =1 if n =0,

but is zero otherwise, while

(0,  ifn=0, (112, ifn=0,
pi(n) = i(;r)z’ otherwise; p2(n) = %, otherwise.

We can apply the above results to analyze an image, which for our purposes will be a real-valued function
supported on the rectangle [0, M] x [0, N] C R?, sampled on a regular grid with grid point coordinates
{(myn):0<m < M; 0<n< N}. We will use a bump function supported on small subrectangles of size
p X g, rather than a dilated radial function, for g.. Translations of f have no effect on | f |2, so we may assume
that the localized portion of the image has been translated to the subgrid {(m,n):0<m <p; 0 <n < ¢}.
The dual local autocovariance matrix may then be computed as follows:

Eu = S0 flmgn)f(mn)pa(m —mpo(n — ') (®)

Ey = Z Z f(m,n)f(m,n ua(n —n'); (9)

Eiy = By = Flmyn) f(m',n" 1 (m —m" )i (n —n'). (10)

Around each grid point 2° of the image, we perform the following steps:



Figure 1: Geometrical figures: image, and edginess.

Localization. Extract the samples on the square subgrid z° + [—¢€, €] X [—¢,¢€|, where a small positive
integer plays the role of € in Definition 1. Then p = g = 2¢ + 1. The sample at 2° becomes the sample
at 0 in the (2¢ + 1) x (2¢ + 1) extracted subgrid [—e, ¢]2. The sample at 2° + y is multiplied by the
Gaussian bump function exp(—n|y|?/€2) and stored at y in the subgrid. This costs O(e?) operations
per pixel.

If 20 is within € grid points of the boundary, then we simply pad any missing samples in the subgrid
with zeros. For definiteness, we chose e = 3 to prepare our case studies.

Dual Autocovariance. Compute the 2 x 2 matrix E = (E;;) using Equations 8,9, and 10. This always
yields a real-valued, symmetric, positive semidefinite matrix. The computational complexity of the
quadruple sum in Equation 10 dominates the triple sums of Equations 8 and 9, so this step costs O(e?)
operations per pixel.

Eigenvalues. For symmetric 2 x 2 matrices F, the exact formula for eigenvalues is:

1
A= 3 (Ell + By + \/(Ell — E2)? + 4E%2) ) (11)

where we take + for A\; and — for A\s. These will satisfy A1 > Ay > 0, so in particular, if Ay > 0 we
always have A;/\y > 1. The greater the relative difference, the greater the edginess.

Edginess. We define this to be the ratio A1 /Ay. We actually compute the bounded reciprocal A2 /A1 € [0, 1],
amplified to fill the grayscale range of a write-black display device. That way, the darkest marks indicate
the greatest edginess.

The Dual Autocovariance step dominates the computational complexity. It is therefore O(p%q?) opera-
tions per pixel, if we localize to subgrids of p X ¢ points.

The algorithm described above, localizing with Gaussian bumps restricted to 7 x 7 subgrids centered at
29, is illustrated by its action on the various types of singularities in Figure 1. Software to produce these
images is available from the author’s web site, http://www.math.wustl.edu/"victor. There are piecewise
constant functions with jump discontinuities along various rectifiable, mostly smooth curves, as well as point
singularities of various magnitudes and a patch of independent, uniformly distributed noisy pixels.



3 Computation with Adapted Wavelet Bases

Speedups in numerical simulations have been obtained by representing solutions to complicated problems
as superpositions of relatively few wavelet packets. This approximation scheme is nonlinear, keeping only a
short series of those component functions with significant amplitudes; the others are discarded. Making this
choice to minimize a description length or information cost criterion is called a best basis algorithm [6].

Computed simulations of fully-developed turbulence in the two-dimensional Navier—Stokes equation (2D-
NSE) provide an example [11, 31]. 2D-NSE simulations on 10* to 10° grid points indicate that 10% of the
components suffice for deterministic predictability for short, and 1% suffice statistical predictability such
as estimates of the vorticity power spectrum. Turbulence simulations are thus an example “compressible”
high-dimensional problem.

After reduction, all of the numerical computations are done in wavelet packet coordinates. Some of
the known algorithms are matrix-vector and matrix-matrix multiplication [2, 27], numerical differentiation
[20, 1, 30], multiplication [9, 23], and certain integral operators [12, 29]. The multiplication algorithm is key
to solving nonlinear equations and is sketched here.

Given two functions approximable with short wavelet packet series, their sum is evidently approximable
by another short wavelet series. If the wavelets are smooth and have vanishing moments, then the same is
true for products. The short wavelet series representing their product may be found by pre-calculating the
connection coefficients which express the product of two wavelets or scaling functions as a wavelet series.
A method suggested by Daubechies and also used by Dahmen, et al., allows rapid computation of these
coefficients by matrix fixed-point iteration. The complexity of the multiplication algorithm is bounded by
the number of nonnegligible connection coefficients.

Only compactly-supported wavelets of Daubechies and Mallat [10, 21] are considered here, rather than
the more general wavelet packets. These are refinable functions, expressible as short linear combinations of
dilated and translated versions of themselves. Refinable functions have a cross-scale self-similarity that can
be used to compute integrals of their products, and thus to find connection coefficients.

The algebraic properties of refinable functions are well known, and have been heavily exploited in recent
papers on wavelets and numerical analysis. Dahmen and Micchelli [9] considered the problem of evaluat-
ing integrals of products of refinable functions and their derivatives. Kunoth [18] later implemented the
algorithms described in that paper. Latto, Resnikoff, and Tenenbaum [19] also derived a linear system of
equations for connection coefficients involving two-scale equations for refinable functions.

Suppose that {ey : k € Z} is an orthonormal basis for L?(R) consisting of bounded functions. Then the
triple product ejere; is defined and integrable over R, so the abstract connection coefficients of this basis
may be defined as the following integrals:

T = (ej, ener) def /Réj(t)ek(t)el(t)dt. (12)

These coefficients are used to find the expansion of a product. If u(t) = >, urer(t) and v(t) = >, vie(t),
then

u(t)v(t) = Z ijklukvl e;(1). (13)
j k,l

An example simpler than L?(R) is the space of sequences ¢? with the Kronecker basis ei(n) = §(n — k),
where §(z) is the Kronecker symbol which is 1 if 2 = 0 and 0 otherwise. The inner product in Equation 12
is a sum rather than an integral, and we see that I'ji; = §(j — k)0(j — ). The inner summation of Equation
13 simplifies into the pointwise multiplication formula Zk,l Ljriugvr = ujvj.

Another simple example is the Fourier basis ej(t) = e*™** k € Z, for L?([0,1]). This basis is both
orthonormal and closed under multiplication, so I'ji; = §(k +1 — j). A change of variables in the inner
summation of Equation 13 gives the usual convolution formula Zk,l Djpug = Ek UKV

A less simple example is the Haar basis of Equation 1. Its basis functions are indexed by a pair of integers,
so their connection coefficients require six integer indices:

o /R Bon () o () ok () (14)



The integral may be evaluated explicitly, since the Haar functions are almost closed under multiplication.
The product of two Haar functions s, and vy, is either zero (if their support intervals are disjoint), or
2751(2 %z — n) (if they are equal, as when s = ¢ and n = m), or :|:2*STH1/Jtm (if their support intervals

intersect, and s > t). Reordering so that s > ¢ > r gives
2792, ifs>t=randm=ke 2t n,n+1) def L(s —t,n);
str __
Dimk =9 —2-5/2 ifs>t=randm=Fke 257+ 1 n+1) ©f R(s—t.n); (15)

0, otherwise, with s > ¢ > r.

Now n € L{a,j) < 27%n—1 < j<2% andn € R(a,j) < 27n—-1<j<2%% -1 For

fixed n and a > 0 exactly one of these inequalities will have a solution j def M(a,n), and that solution will
be unique. Putting S(a,n) = +1 if n € L(a, M(a,n)) and S(a,n) = —1 if n € R(a, M(a,n)) yields the
following multiplication formula:

s—1
Z | IR T R 27%/2 Z Z UtmV¢m — Z UtmUVtm
t,m,r.k t=—00 [meLl(s—t,n) meR(s—t,n)
oo
+ Z 2_t/25(t75,n) [ut,M(t—s,n)Usn + usnvt,/\/t(t—s,n)} . (16)
t=s+1

Finally, consider orthonormal wavelets[10]. The two-scale equations produce the connection coefficients
through iteration and filtering. As in the Haar case, there are six indices: T'S" . One starts with the
coefficients derived from the scaling functions:

def
Aine [ Gun(a)bum()bre() da (a7
R
One may suppose without loss that s > ¢ > r. Also, changing variables gives
Astr = 2_§Afl;:,;t_r’0 = 2_%A‘(9];:Lﬂf;:ign,k725*7“n’ forn,m,k€Z and s>t >r € Z. (18)

Thus, to obtain A" it suffices to compute Agk et Aé{%k for m,k € Z and i > j € Z. These values are
themselves computed by fixed point iteration. For all triplets (n, m, k) of integers, define

Apmie X400 — [R bz — n)d(x — m)p(x — k) da, (19)

This quantity will vanish whenever the triplet is so large that the scaling function factors have disjoint
support. It also satisfies A,mir = An—k m—k,0, so it suffices to compute the simpler quantity:

Am,m) % Ao = / 6z — n)o(z — m)o(x) da (20)
R

But this matrix satisfies its own two-scale equation [23]:

Theorem 3 Suppose that hy, =0 unless 0 < k < L. Then A(n,m) =0 unless —L <n <L and —L <m <
L. Also, A satisfies the homogeneous fized-point equation

A(n,m) = Z a(p,q)A(2n —p,2m — q), —L<n,m<L,
psa
where
def L
a(paq) = \/EZ hkfphquhk; ~-L< p,q< L.
k=0



The complete set of connection coefficients I'$'”  may be obtained from the following numbers, which
must be computed for all m, k € Z and for all i > j € Z:

ii def _iti —i —j —Es—rt—
i b gt /R Y22 e~ m)b(x — k)de; T =270 T (21)
'Y comes from A% by filtering:
g y def ij
Fifme\/i Z gn'gm’gk’A;Jn+n’72m+m’,2k+k’ = ﬂGlG?Gi"Agﬂmk’ (22)
n,,m/7k,

written as a separable filtering operation.
Likewise, A% comes from A by filtering. The two-scale equation for ¢ gives one step:

g Z i1, def i1,
Anmk: - h”/AZn—Q—n’,m,k: - HlAn,m,k' (23)
n/

Iterating ¢ times in the first scale index and j times in the second gives A:fmk =H {H% Ap,m K, using the
commuting operators

HyB(n,m, k) € Y hyB@n+n/,m k), HyB(nom,k) S > by B(n,2m+m' k). (24)

Combining the H and G operations yields I" from A by filtering:
Y = 2G1GoGsHIH) Ay - (25)

nmk —

The C12 filters of Equation 4 provide a good example. They define the following «, whose entries are
multiplied by 1000 and truncated to integers for display purposes:

0 o -1 -1 0 o -1 -1 —1 0 0 —1 0 0 0 0 0 0 0 0 0 0 0
0 o -1 -1 0 o -1 -1 0 0 —1 —1 0 0 0 0 0 0 0 0 0 0 0
-1 -1 0 o -1 -1 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0
-1 -1 0 o -1 -1 0 0 0 —1 —1 —1 0 0 -1 0 0 0 0 0 0 0 0
0 o -1 -1 0 o -1 =2 -2 -2 -2 -1 -1 0 0 -1 0 0 0 0 0 0 0
0 o -1 -1 0 -1 -1 -1 1 1 0 -1 -2 -1 0 -1 -1 0 0 0 0 0 0
-1 -1 0 o -1 -1 3 8 8 10 14 9 0 —2 0 0 -1 0 0 0 0 0 0
-1 -1 0 o -2 -1 8 7 -9 -21 -—12 11 14 1 —2 0 0 0 0 0 0 0 0
-1 0 0 0o -2 1 8 -9 —-45 —-65 -76 —-61 -—12 10 1 -2 o -1 0 -1 o0 0 0
0 o -1 -2 1 10 —-21 —-65 32 122 8 -76 -—21 8 -1 -1 -1 -1 -1 -1 O 0
0 1 0o -1 -2 0 14 —-12 —-76 122 549 543 122 —65 —9 8 -1 0 -1 0 -1 0 0
-1 -1 -1 -1 -1 -1 9 11 —61 8 543 941 549 32 —45 7 3 -1 0 0 0 0 0
0 o -1 0 -1 -2 0 14 —12 —-76 122 549 543 122 —65 —9 8 -1 0 -1 O -1 O
0 0 0 0 0o -1 -2 1 10 —-21 —-65 32 122 8 -7 -21 8 -1 -1 -1 -1 -1 -1
0 0 o -1 o0 0 0 -2 1 8 -9 —45 —-65 —-76 —61 —12 10 1 -2 0 -1 0 -1
0 0 0 o -1 -1 0 0 —2 —1 8 7 -9 =21 —12 11 14 1 -2 0 0 0 0
0 0 0 0 0o -1 -1 0 0 —1 —1 3 8 8 10 14 9 0o -2 0 o -1 0
0 0 0 0 0 0 0 0 —1 -1 0 —1 —1 —1 1 1 0 -1 -2 -1 0 -1 -1
0 0 0 0 0 0 0 0 0 -1 -1 0 0 -1 -2 -2 -2 -2 -1 -1 0 0o -1
0 0 0 0 0 0 0 0 -1 -1 0 0 -1 -1 0 0 o -1 -1 -1 0 0o -1
0 0 0 0 0 0 0 0 0 -1 -1 0 0 —1 -1 0 0 0 0 o -1 -1 0
0 0 0 0 0 0 0 0 0 0 0 0 —1 —1 0 0 -1 -1 0 0o -1 -1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 —1 —1 0 o -1 -1 -1 0 0o -1

The origin m = k = 0 of a(m, k) is at the center, m increases downwards, and k increases to the right as
in the convention for matrices. The corresponding fixed point A is plotted below in Figure 2.

After computing the kernel a of the fixed-point problem, iterate from the elementary double sequence
A(m,k) =1 <= m =k = 0 until the maximum change per iteration in a coefficient of A falls below 1076,
To get the other scaling and connection coefficients, apply the filter operators G1, G2, G3, Hy, and H, as
needed.

Each application of an operator G, G2, Gs, Hy, or Hy costs L operations per output coefficient.
Unfortunately, the number of output coefficients grows with each application. For filters supported on
{0,1,...,L—1} and fixed 4, j > 0, the matrices A% (m, k) and ' (m, k) will vanish outside —L < m < 27
and —L < k < 2!L. However, as seen in the graphs, many of the coefficients with indices in this range
are negligible. The graphs show level lines of the logarithm of the absolute value of scaling and connection
coefficients. The origin m = k = 0 is always at the center of the square. The graphs are oriented such that
m increases to the right and k increases upwards as in the convention for zy plots in the first quadrant.



Figure 3: T, I''"% and I'"! for C12 filters.

Figure 4: A%!, A32 and A33 for C12 filters.

‘> -6 o=

Figure 5: '3, T'32 and '3 for C12 filters.



4 Entropy of Wavelet Packet Coefficients

Having a choice of transforms for data compression suggests choosing one that optimizes coding efficiency.
If the transform coefficients are independent random variables, then the Shannon—Weaver entropy[25] of
the sequence determines the minimum bit rate needed to transmit them. This entropy cannot be calculated
before the transform is chosen and all the coefficients are known, but if large coefficient values are very sparse,
as is commonly observed in practice, then the entropy is equal to the logarithm of the theoretical dimension
of the coeflicient sequence, which can be computed on pieces of the signal to guide the transform choice. The
result is a best-basis algorithm [6] that minimizes theoretical dimension over a library of transformations,
choosing the transformation that yields best compression and also giving an estimate of the compression
rate.

Transform output coefficients {x,, : m = 1,2,...} are modeled by independent Bernoulli trials of a
random variable with a fixed probability density function p = p(t). For technical reasons, assume that p is

continuous and strictly positive on (0,1). It defnes a probability P{E} def J p(t) dt for each measurable
E c[0,1].

For fixed 1 < N < o0, (uniform) quantization to N values is defined by the formula Qy () def | Nx|/N.
If € [0,1) then Qn(z) € {0, 4, %,..., &2}, For coding or transmission, {z,} is replaced by a quantized
version of itself, namely {Qn(2,,) :m=1,2,...}.

After quantization, the root-mean-square error, or distortion, per sequence element will have the following

expected value:
1/2

Dy % (B{lzm - Quan)P)) " = ( JACNCIRO dt) | 0

Since the terms in the sequence are independent and identically distributed random variables, the distortion
is independent of m. Each quantized value z,, will have the following discrete probability density function,
independent of m:

def n—1 v
i P{QN(xm): I } :/n p(t) dt; n=1,2,...,N. (27)
~
Shannon’s theorem [25] states that the expected number of bits per element required to encode this
quantized sequence cannot be less than, but can be made arbitrarily close to, the entropy of the distribution,
defined below:

N
def
Hy = _E pn10g2pn (28)
n=1

Huffman coding [16] is one way to achieve this efficiency.

A simple rate-distortion curve for this combination of quantization and coding is obtained by plotting
10log,y DN against Hp, so that the units are decibels of distortion versus bits per coefficient. The number
of quantization intervals N parameterizes the curve. Hy and Dy can be estimated from p.

n—1 n

For Hy, write p, = %-p(&,) for some &, € (5%, &). Then
| 1 N1
= =3 ool lom | polen)| = 1oma N =3 o) g pfc) (20)

The second term is a Riemann sum approximating — fol p(t) log, p(t) dt, which may be called the source
entropy H(p). The log, N term is present because at super fine quantizations the less significant digits
contain most of the information even though they have almost no connection with p.

Now Dy, if p is continuous, has the following asymptotic behavior as N — oco:

22 3 YN 2 1 1
lim N°D% =N t“dt=- = Dy~——o.
N oo N /0 3 N V3N
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Combining Equations 29 and 30 shows that
10log,o Dy ~ —10log o N — 5logy g3 ~ —AHN + BH(p) — C, as N — oo, (31)

where A, B, C are positive constants. Thus the rate-distortion curve is asymptotic to a line of negative slope
with an intercept at BH(p) — C. Shifting the curve to the left improves the rate-distortion relationship in
the sense that the same transmission quality is obtained at a lower bit rate. Such a shift is accomplished
by reducing H(p), or equivalently by transforming the sequence {z,,} so that it appears to come from a
lower-entropy source.

Fix 1 < M < oo, let {z1,..., 2} be a sequence of M Bernoulli trials of the random variable with density
p, and let {z7,...,z3,} be the decreasing rearrangement: z{, def >a] >x5 > a3y >0 def Thryq- Let

x* = x*(t) be defined on the interval [0, 1] as follows:

x*(t) =}

m»

if << me 24(0) = 1. (32)

This is a decreasing step function. The same sequence determines another step function as follows:

mo.. .
y(s) = 3 Hanp <s<an; y() =0 (33)
These two step functions y and z* are approximate inverses: y(z*(t)) = Qu(t), while z* (y(s)) =
max{z :ak < s} Q. (s). Thus y inverts a* up to the precision of the M-bin uniform quantization,

while z* inverts y up to the precision of the generally nonuniform quantization defined by the monotonic
sequence {z%,}.

Now y(s) is the fraction of values of m € {1,2,..., M} for which z,, > s. Since the z,,’s are independent,
this expectation depends only on p, not on M:

Ey(s) = / o(t) dt. (34)

Thus £ Ey(s) = —p(s), so Ey(s) is strictly decreasing and continuously differentiable. Hence Ey has a
differentiable inverse function z = z(t), and the source entropy may be written in terms of z’:

1 1 1
1 -1
H(p) = —/ p(s)log p(s) ds = / [7] log [7} ds = / log [—2'(t)] dt. (35)
0 o LZ(Ey(s)) 2 (Ey(s)) 0
But since y is the approximate inverse of *, while z is the inverse of Fy, one may approximate z ~ x* and
1 M
/ log [~ 2'(t)] dt ~ Z log[-Ax} ], (36)
0 m=1

def
where Azy, = zy, —xy,_ form=1,2,...,M. If z1,...,2,, are so concentrated near 0 that =* decreases

exponentially, then —Az} = bz}, for some constant b > 0, and

M M
’H(p)%Mlogb—i—Zlog|xfn|:M10gb+ Zlog|xm\, (37)
m=1 m=1

since the right-hand sum is independent of the order of summation.

Finally, note that I(z) = 32", log [x,,] is an additive information cost function [26]. In the best-basis
method with I, a transform T is chosen for a signal u such that I(Tw) is minimized. If the minimizing
coefficient sequence x = T'u has an exponentially decreasing rearrangement, then it will appear to come from
a source whose entropy is approximately I(x).

11



5 Wavelet Packet Spreading

Wavelet packets defined by a single filter pair have uncontrolled size and basis properties, in general. By
substituting different filters at different scales according to a rule, these can be controlled. One can obtain
Schauder bases of uniformly bounded, uniformly compactly supported wavelet packets. By controlling size
and support, one can apply the Carleson-Hunt theorem to show that certain wavelet packet Fourier series
of a continuous function converges almost everywhere.

With the definitions Fj < H and " def @, it is possible to write the filter formulation of wavelet
packets:

wn:Fanng"'Fan07 (38)

where 2771 < n < 27 is written in binary as n = ijl n;2971, n; € {0,1}. The numbering is chosen so that
n1 is the least significant bit and n; is the most significant bit of the J-bit expansion of n. The restriction
271 < n < 27 implies that ny = 1.

But operators H and G also act as Fourier multipliers:

@) = gma (5 ) in (5) 5 mnia© = g (§) 0 (§). (39)

where mg(€) = >, by e 72" and my (&) = Y, gk e 72"k are 1-periodic functions. They are trigonometric
polynomials whenever h and g are finitely supported, as in the Walsh example where mg(¢) = 1 + 2™¢ =
2¢™€ cos €, and my (&) = 1 — €2™8 = —2ie™ sin €. Hence, there is also a multiplier formulation of wavelet

packets:
1
n(©) = gyl s (7)o (7o) o (55 o (3). (o

For every positive integer N > 1 there is a Daubechies wavelet supported in [0,2N — 1] which belongs
to the smoothness class C¢ for d ~ N/5 [10]. Since Daubechies’ wavelets form an orthonormal basis, the
associated wavelet packets {wy, ; : n € N,k € Z} form an orthonormal basis for L?>(R), and they are just as
smooth as the mother wavelet and scaling function, because the filters are finitely supported. Unfortunately,
though they are smooth, these wavelet packets are not uniformly bounded [5]:

Theorem 4 For any orthogonal CQFs (h,g) for which mo(§) # 0 on =% < & < 7, the wavelet packets
{wy,} satisfy
. 1. N
limsup — ([[dolly + -+ + [[dn[[1) = oc.
n—oo T
The nonvanishing condition on my is satisfied by Daubechies’ filters. If in addition mg is nonnegative,
then ||y, ||1 and ||wy, || Will be equivalent, so

1
limsup — (||wolloc + -+ + [[wnlleo) = 0.
n—oo N

Thus, such wavelet packets are not bounded on average, as the frequency index increases. This result was
refined by M. Nielsen [22]:

Theorem 5 For Daubechies’ filters of length L = 4 through L = 20, there exist pmin < oo, C' > 0, and
r > 1, all depending on L, such that ||wan 1|, > Cr™, for all p > pmin.

In particular, the theorem holds for p = cc. In the L = 4 case, pmin = 2 is the smallest possible value,
and the same result holds for some other well-known CQFs, but the sharp lower bound is not known in
general. There is numerical evidence that the wavelet packets with frequency index 2™ — 1 have the fastest
growth as n — oo, while those with frequency index 2" seem to be uniformly bounded. It is not known
whether Daubechies’ wavelet packets have the almost everywhere convergence property.

N. Hess-Nielsen [14, 15] originally introduced the idea of building wavelet packet bases with more than
one CQF pair in order to design a single short CQF pair with the same frequency localization as longer
CQFs. Given a desired depth J of wavelet packet decomposition, this resulted in a savings of approximately

12



half the arithmetic operations in subband decompositions. The algorithm is based on two generalizations of
Equations 38 and 40. Let {(h7,g7 : J =1,2,...} be a family of orthogonal CQF pairs, fix wp, and for J > 2
and 277! < n < 27 define nonstationary wavelet packets by

wp(z) = F,ing2 e F;L]on(x), (41)

or alternatively, in the multiplier formulation, by

- gm(§) 1 (§) o () ()

The superscript indicates which pair of CQFs defines the filter operator or multiplier. The idea is to change
the filters used to generate wavelet packets as their frequency increases. The associated transforms are as
fast as ordinary wavelet packet transforms, but the new functions are better behaved. They may be designed
to have the almost everywhere convergence property, or else to have uniform size, independent of frequency.

For example, (h”/,g”) might be the Walsh CQF pair for all sufficiently large J > J;. The resulting
wavelet packets are called Walsh-type. Likewise, if (h”,g”) is the Shannon CQF pair of Equation 6 for all
sufficiently large J > Jo, then the resulting wavelet packets are called Shannon-type. M. Nielsen [22] proved:

Theorem 6 Both Walsh-type and Shannon-type wavelet packet series converge pointwise almost everywhere.

These theorems are direct consequences of the Carleson-Hunt theorem [3] for Walsh series and Shannon
series. Generalizing a result of Y. Meyer, M. Nielsen showed that for each Walsh-type wavelet packet basis
and each 1 < p < o0, there is an isomorphism of LP that maps the basis onto Walsh functions. The LP
boundedness of the Carleson operator follows. Similarly, each Shannon-type wavelet packet basis is an L?
isomorphic image of the Shannon basis functions.

One can also use nonstationary wavelet packets to control the growth of |w,||, for large p, as n — oo,
using lengthening filters. the idea is to get a uniform bound from ||wy||e < ||ty |[1 by controlling frequency
spreading ||@,||;. A. Cohen and E. Séré [4] showed the following:

Theorem 7 Suppose (h’,g”) is a family of orthogonal CQFs whose length function L = L(J) satisfies
L(J) > ¢J3¢ for some ¢ > 0 and € > 0. Then the associated nonstationary wavelet packets {w, } satisfy

277 (llolly + - -+ + |5 4]l) < B,
for some B < oo and all J > 0. Thus,

277 (wolloo + -+ + lwzs _1]le0) < B,
as well.

M. Nielsen [22] refined this result in the special case where h”/, g/ are the Daubechies orthogonal CQFs
of length L(J). It is necessary to redo the entire recursion for each new level. Let

{((h‘]"],g‘]"]), ceey (hJ’l,gJ’l)) :JJ=1,2,...},

be a family of sequences of orthogonal CQF pairs. Fix wg, and for J > 2 and 277! < n < 2/ define highly
nonstationary wavelet packets by

w(z) = FLEL? - Fwo (), (43)

or alternatively, in the multiplier formulation, by

1
i) = gun (57 ) 27 (7)o (52 )t (5)- (a4)

Here the superscripts indicate which pair of which sequence of CQF's defines the filter operator or multiplier.
In fact, h'J ©f 17 and g7 ef g’ for all j =1,2,...,.J. One may suppose that wy is any scaling function
that generates an orthonormal basis, not necessarily a Daubechies scaling function. One must suppose,
however, that wg is smooth enough so that |10g(£)| = O(1/[¢]17€) for some € > 0. One first obtains a basic
result, part of which was also shown in [4]:
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Theorem 8 For any length function L = L(J), the nonstationary wavelet packets derived from {h”,g”}
and the highly nonstationary wavelet packets derived from {h”7, g7} form an orthonormal basis for L*>(R).

The additional properties of Daubechies’ CQFs give a better growth result:

Theorem 9 If the length function satisfies L(J) > ¢J?T¢ for some ¢ > 0 and € > 0, then the nonstationary
wavelet packets derived from Daubechies’ filters {h”?, g’} are uniformly bounded functions.

The support diameter of the nonstationary wavelet packet w, grows without bound as n — oo, if
L(J) — oo as J — oo. This is overcome, strangely enough, by backing up and introducing longer filters
earlier in the highly nonstationary wavelet packet algorithm [22]:

Theorem 10 If the length function satisfies cJ?*T¢ < L(J) < CJzTJJr for some ¢ > 0 and € > 0, and w;
has compact support, then the highly nonstationary wavelet packets {wy} derived from Daubechies’ filters
{73,979} are uniformly bounded and have uniform compact support in a fived interval independent of n.
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