Adapted waveform analysis as a tool for modeling, feature extraction
and denoising.

Ronald R. Coifman,M Victor Wickerhauser

We describe the development of Adapted Waveform Analysis (AWA) as a tool
for fast processing of the various identification tasks involved in medical diagnostics
and Automatic Target Recognition.

These tasks typically consists of various stages:

i) Sensing and data acquisition
ii) Preprocessing for clutter and noise elimination as well as enhancement

iii) Parameter extraction
iv) Modelling

V) Classification

AWA is a tool for ameliorating each of these steps, either by accelerating the
computation or by providing new means of analysis and modeling, for extracting
features and classification.

Until recently, one of the main tools for processing measured signals has been
the Fast Fourier Transform computed on segments of the signal.

In essence, this analysis consists in matching the signal to predetermined seg-
ments of (windowed) cosine waveforms.

AWA extends this analysis to a broader collection of waveforms (libraries), where
the choice of waveforms for analysis (or appropriate orthonormal basis)is made au-
tomatically by a measure of fit between the class of ”targets” and the corresponding

waveforms.

Typeset by ApS-TEX



The Karhunen Loeve basis has been used in the past to achieve a similar goal,
unfortunately K-L bases involve heavy computations both initially and in processing
new acquired data,and only provide a decorrelated basis. AWA consists of fixed
libraries giving rise to K-L-like bases equipped with fast numerical transforms (with
roughly the same speed as FFT). AWA enables us to optimize the coordinate system
used to represent the signal .Moreover this optimization can be adjusted to different

goals by using various ”cost functions”.

The simplest description of these methods is provided by the following analogy.
Consider the problem of speech storage . Clearly the least efficient way is to record
the speech and digitize each sample (say 8000 per second). A most efficient method
,on the other hand ,is to transcribe the speech into english since each word is
described by a few characters. Of course we keep the meaning but lose the voice,
intonation etc. A more abstract and flexible method for audio compression (or
description) is used by musicians who transcribe their music into musical scores.
The score is a list of notes to be played at different times at different intensities
and durations . For an orchestra the score will also specify an instrument. To
carry this analogy further into images we might want to describe a painting as a
superposition of brush stokes listed by layers. AWA is a mathematical version of
the transcriptions described above with an essential added ingredient. The sound
or images are analysed in realtime and a most efficient transription is found,( the
minimal number of brushstrokes or the shortest score ) . This transcription is
lossless ,if so desired ,or could lose undesirable or irrelevent features if needed.
Clearly the process of transcription provides a rudimentary model of the measured
signal , permitting the extraction of few relevant parameter to feed into classifiers.

The parameters obtained are more stable, giving more confidence.



Definitions of Modulated Waveform Libraries.

We start by recalling the concept of a “Library of orthonormal bases”. For the
sake of exposition we restrict our attention to two classes of numerically useful

waveforms introduced recently [1][3].

We start with trigonometric waveform libraries. These are localized sine trans-

forms LST associated to covering by intervals of R (more generally, of a manifold).
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form an orghonormal basis of L?(R) subordinate to the partition p;. The collection

of such bases forms a library of orthonormal bases. [3].
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is a “window” function covering the interval I; U ;.

Another new library of orthonormal bases called the Wavelet packet library can
be constructed. This collection of modulated wave forms, corresponds roughly to
a covering of “frequency” space. This library contains the wavelet basis, Walsh

functions, and smooth versions of Walsh functions called wavelet packets.|1]

Wavelet-packets




These waveforms are mutually orthogonal, moreover, each of them is orthogonal
to all of its integer translates and dyadic rescaled versions. The full collection of
these wavelet packets (including translates and rescaled versions) provides us with
a library of “templates” or “notes” which are matched “efficiently” to signals for
analysis and synthesis.[1],[4], Wavelet packet expansions correspond algorithmically

to subband coding schemes and are numerically as fast as the FFT.

We were led to measure the “distance” or good fit between a basis and a function

in terms of the Shannon entropy of the expansion.

For example in the LST Library case

Tree search In the LST library
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We compare the entropy of the expansion in two adjacent windows to the en-
tropy of the expansion on their union.and pick the least expensive ,continuing the
comparison with the selection made for the next pair ,etc. Ending up with the so
called best basis of minimal cost . The wavelet packet best basis algorithm is similar

but optimizes the segmentation in frequency space. This straighforward procedure



is analoguous to a direct simple musical transcription.

In order to extract structures out of a signal ( orchestrate it) we will combine
several expansions in different orthogonal functions out of distinct libraries of wave-
forms .We can view each library as a musical synthetiser (or instrument). Our task
is to match the instruments to the signal . Another analogy explaining the idea
behind these algorithms ,involves interpretation of sound in several languages ,say,
English,French,Japanese. To an English dictionary Japanese is pure “noise” ,there-
fore the natural approach will be to correlate the sound to words in each dicationary
separately pulling out the best correlations from each . Our approach here is to
pick a best basis representation of the signal as long as it is well compressed (or
well matched), the moment the compression rate deteriorates we stop and repeat

the process on the residual.

This procedure is illustrated in the following figures where the original underwater
noisy signal is peeled into layers as described above. We think of the well compressed

part as coherent ,and of the residual as noisy.



An underwater sound signal
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The first coherent component of the underwater sound signal,rough engine sound
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The first noisy residue of the underwater sound signal
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The coherent part of the preceding noisy part,perhaps a propellor sound
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The second noisy component
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The third coherent component
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The third noisy component
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The sum of the coherent parts ,” denoised signal”
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Preprocessing.

As was discussed, variations on the denoising described in the above method

have been tested as a tool for separation of clutter in SAR images as well as for

Y

elimination of ” noise ” in echoplanar MRI video images.(where the transcription

algorithms provides a rudimentary model of the structure)



16

Echoplanar MRI noisy on top denoised as a video below
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Typically this procedure of decomposing a signal into different layers adjusted
by appropriate thresholds leads to an extraction of the “interesting” core part of
the signal. We can use this core part as “clean” data for numerical compression

and analysis. More specifically, numerical compression, in which a specific efficient
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wave form library is selected for representation of the data, results in a reduction

of the number of parameters used for further processing algorithms .

This step is crucial for reducing the computation time on two levels: First, the
expansion in the chosen waveform basis is fast (at worst of order Nlog N, N is the
number of samples). Second, the compression achieved reduces the dimensionaltiy
of the problem. As an example, we point out that this procedure can substantially
increase the speed of computation of the Karhunen Loeve basis and corresponding
expansion for statistical factor analysis. Similarly, the reduced set of coordinates
can be the input to neural nets and other clustering and classification methods

accelerating the computation time substantially . .

The possibility of selecting a best basis for compression is but one aspect of a
class of waveform selection algorithms. We developed various methods for selection
of best bases for discrimination among different classes of signals as well as for
classification. Such bases can be found by choosing cost function for waveform
selection for which a waveform has low cost if it correlates well with targets in
a desired class and correlates weakly with the other classes. We are currently

experimenting with a variety of such cost functions ( as defined by the classifier) .

We feel that these need to be constructed differently according to the nature of

the target and the model at hand.

The obvious advantage of such methods is the speed of search for such bases.
The tree search described previously eliminates the usual combinatoric explosion
involved in these problems. Moreover such search actually provides discrimination
features which should facilitate modeling. The procedure here is very similar to

the methods used by statitisticians when using Classification and Regression Trees

(CART) .
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In conclusion, while it is possible that such preprocessing methods might be
incorporated directly into diagnostic and ATR systems, it is more likely that these
methods will serve more as an analysis tool to enable the modeling and construction

of specific processors.



19

Bibliography for Adapted Waveform Analysis.
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