Chapter 1
An Adapted Waveform Functional Calculus *

Mladen Victor Wickerhauser®

Abstract
We briefly survey how to use libraries of (orthonormal) bases of well-behaved
waveforms, including wavelets and lapped orthogonal transforms, so as to obtain fast
numerical algorithms for the expansion of functions and operators in these bases.
The most important applications are fast approximate matrix multiplication, and
application of matrices to vectors.

1 Nonstandard matrix form

By decomposing a matrix into its 2-dimensional best basis [6], we reduce the number
of nonnegligible coefficients and thus reduce the computational complexity of matrix
application.

For simplicity we will consider the periodic case only. Write W for the collection of
one-dimensional r-periodic wavelet packets [3] with r = 2F. Let )stp be a representative
wavelet packet of frequency f at scale s and position p, where 0 < s < L, 0 < f < 2°, and
0 < p < 2575, We may call this index set Z.

Let W' denote the space of wavelet packet sequences. This is an rlog, r-dimensional
space, and there is a natural injection J! : R™ < W! given by J'z = {A\sp, = (z,%ssp)}
for x € R", the sequence of inner products with functions in W. If B C Z indexes a basis,
then J 113, which is J! restricted to the B indices, is an isomorphism. By orthogonality, its
inverse is a map RY : W1 — R" defined at the left in 1. This map R} can also be extended
to the range of J!, which is all of W!. We may call this extension R' : W! — R'; it is
defined at the right of 1.

(1) R}?A = Z )\sfpwspr Rl/\ = Z Asfp¢sfp-
(s,f,p)EB (s,fp)EZ

For any basis subset B, R!J}, is the identity on R", and J! R} gives an orthogonal projection
of W' onto the range of J'.

By using tensor products we get another space W? = W@ W! of sequences {1 Fps' f1p! }-
Objects in the space R?", i.e., r x r matrices M, inject into this space YW? in the obvious
way: J2M = {,usfps’f’p’ = <Ma Zstfp ® ws’f’p’> tYeW, (Sa fyp)v (Slvflap,) € 7, }7 where
J? : R? < W? denotes the injection. If B is a basis subset of Z x Z, then the restriction
J% of J? to the B-indexed components is also injective, and J3 is an isomorphism.

The nonstandard form of a matriz M is the organized array of coefficients J5M. We
can perform linear algebra in the nonstandard form just as well as in the standard form.
The advantage is that B may be chosen to maximize the number of negligible coefficients
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and thus reduce the cost of approximate computations. B can be a complicated mixture
of pieces from the two Z factors.

2 Applying a matrix to a vector

Let M be an r x r matrix and suppose B C Z is a basis subset. Then we have:

def
(2) <M£L', ¢sfp> = Z <M, wsfp X wslflpl> <I, ws’f’p’> é Z 'L,Lsfpslf/p/ /\S’f’p"
(Slvflyp,)eB (S,’flyp/)eB

This generalizes to a linear action A — Z(s’f’p’)e 7 Mstps' f'p’ Ao frpr DY o € W?2 on W!. Now,
images of matrices form a proper submanifold of W2. Likewise, images of vectors form a
proper submanifold of W!. We can lift the action of M on z to these larger spaces via the
commutative diagram at the left of 3.

Wl ‘1123_]\{ Wl W2 JJ%;J)V W2
(3) Jt 1 | R J2 1 | R2
R" % R" R2r L RQT

3 Composing operators
Suppose that M and N are r X r matrices, and B is a basis subset. We have the identity

(4) <NM’ wsfp ®’l)[}s/f/p/> == Z <N’ /l)[]s//f//pl/ ®wslf/p/> <M’ wsfp ®/I)Z)Sl/f//p//>'
(S//7f//7p//)€B

This generalizes to an action v +— Z(S//hf//’p//)ez Ls fps't frp!t Vst fropit st frp OF W2 on W2. Using
J?, we can lift multiplication by N to an action on these larger spaces via the commutative
diagram at the right in 3.

4 Examples

We illustrate the above ideas by considering nonstandard multiplication by matrices of order
16. Using wavelet packets of isotropic dilations, we obtain the best isotropic basis action
depicted in the left half of Figure 1. The domain vector is first injected into W! = R1610816
by a complete wavelet packet analysis. It then has its components multiplied by the best-
basis coefficients in the matrix square at center, as indicated by the arrows. The products
are summed into a wavelet packet tree at right, and then projected onto the range space
R by R!, or wavelet packet synthesis.

By reading off the explicit frequency and position of wavelet packet components, we
can see explicitly how frequencies and positions are mixed. It also is possible for each scale
to affect any another, but since input and output blocks must have the same scale, this
action is not immediately readable from the nonstandard matrix coefficients.

If we allow mixed x and y scales, we get the best tensor basis nonstandard representation.
Finding the best basis becomes harder, but the multiplication algorithm is practically the
same. Again J' develops the complete wavelet packet analysis of the input. Blocks in the
nonstandard matrix send input blocks to possibly larger or smaller output blocks, where
they are synthesized by R! into the output. This is depicted in the right half of Figure 1,
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Fic. 1. 16 x 16 Matriz multiplication in isotropic and anisotropic best bases
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Fia. 2. 16 x 16 Matriz multiplication in best bases row by row and column by column

for a matrix of order 16. Such an expansion explicitly shows how one scale affects another,
as well as how position and frequency are mixed.

Rather than choose a basis set among the two-dimensional wavelet packets, we may
also consider matrix multiplication to be a list of inner products and expressing each row of
the matrix in its individual best basis. We expand each input vector in a complete wavelet
packet analysis with J', then evaluate the inner products row by row, up to any desired
accuracy. Schematically, this accelerated inner product may be depicted as in the left half
of Figure 2. Then R! is replaced by a simple sum.

We may also expand matrix columns in their individual best-bases and consider matrix
multiplication to be the superposition of a weighted sum of these expansions. This best
column basis algorithm is depicted schematically in the right half of Figure 2. The input
value is sprayed into the output wavelet packet synthesis tree, then the output is reassembled
from those components with R!.

5 Operation counts

Suppose that M is a non-sparse r xr matrix. Ordinary multiplication of a vector by M takes
O(r?) operations. On the other hand, the injection J? will require O(r?logr) operations,
and each of J! and R! require O(rlogr) operations. For a fixed basis subset B of W2,
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the application of J3M to Jlv requires at most #|J3M| = O(r?) operations, where #|U|
denotes the number of nonnegligible coefficients in U. Thus nonstandard multiplication
costs an initial investment of O(r?logr), plus at most an additional O(r?) per right-hand
side; asymptotically, this is O(r?) per vector just like the standard method.

We can obtain lower complexity if we take into account the finite accuracy of our
calculation. Given a fixed matrix M, write Ms for the same matrix with all coefficients
set to 0 whose absolute values are less than §. By continuity, for every ¢ > 0 there is a
d > 0 such that |M — Ms|| < e. Given M and ¢ as well as a library of wavelet packets, we
can choose a basis subset B C Z x Z so as to minimize #|(J%M)s|. The choice algorithm
has complexity O(r?logr), as shown in [4]. For certain classs of operators [1, 2], we can
arrange that that for every fixed § > 0 we have #/|(J%M)s| = O(rlogr), with the constant
depending, of course, on §. Call this class the sparsifiable matrices S. Then finite-precision
multiplication by sparsifiable matrices has asymptotic complexity O(rlogr).

The best row basis algorithm also has complexity O(rlogr) for sparsifiable matrices,
since it requires O(r log ) operations to apply J! to the input vector, then O(log r) multiply-
adds to evaluate each of the r inner products. Finding the best basis for each of the r rows
of the matrix requires an initial investment of O(r?logr) operations.

Standard multiplication of 7 x r matrices N and M has complexity O(r3). For
nonstandard composition, the complexity of injecting N and M into W? is O(r?logr).
The action of J4N on J2M has complexity O(#|J5N|rlogr). Since the first factor is
r? in general, the complexity of the exact algorithm is O(r3logr) for generic matrices,
reflecting the extra cost of conjugating into the basis set B.

For approximate nonstandard composition, the complexity is O(#|(J%4N);| rlogr). For
the sparsifiable matrices, this can be reduced by a suitable choice of B to a complexity of
O(r?logr) for the complete algorithm. Since choosing B and evaluating J% each have this
complexity, it is not possible to do any better by this method.
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