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Best-adapted wavelet packet bases
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ABSTRACT. This paper is a review of the construction of orthogonal wave-
let packets, using the quadrature mirror filter algorithm slightly generalized
to the case of p > 2 wavelets and scaling functions. It is part of the AMS
short course on “Wavelets and Applications” held in San Antonio, 11-12
January 1993.

Introduction. We begin with a classical reproducing formula for functions
f € H?, the Hardy space of square-integrable functions whose Fourier transforms
vanish on the negative half-line:

L [P ) o
Ife=2 /0 € d¢ < oo and Tf(a7b)—/Rf(x)w(asc+b)d:r,

then f(z) = %//R . W f(a,b)y(ax + b) dadb

This formula was studied by Calderén in the 60’s and revived by Grossmann
and Morlet in their 1984 paper [GM]. A function v satisfying the admissibility
condition ¢ < oo is called a “wavelet,” and the map f — T is called the (con-
tinuous) wavelet transform. The discrete (dyadic) wavelet transform transform
is the restriction f — {T(27,k), j,k € Z}. A well-established sampling theory
[FIW], [Mel] exists which provides necessary and sufficient conditions on 1 for
the discrete transform to be bijective. There are compactly-supported functions
1 with any given degree of smoothness for which the discrete wavelet transform
is orthogonal [D],[Ma]; there is also an orthonormal basis of C'*° wavelets with
exponential decay [Me2].
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The “fast” discrete wavelet transform computes {T}(27, k), j,k € Z} by iter-
ating a pair of operators called quadrature mirror filters (QMFs). Suppose that
H, G are bounded linear operators defined by
(QMF)

Hz, = thz%,k, Gz, = ngz%,k from ¢%(Z) to (*(Z);

k k
Hf(x)=> hef(2r k), Gf(x)=Y gsz(2x k) from L*(R) to L*(R).
k k

They are QMFs if HG* = 0, HH* = GG* = I, and H*H ¢& G*G = I. It
is conventional to assume that H1 = /21 (where 1 is the sequence of 1’s) and
G'1 =0, and to call H and GG the low-pass and high-pass filters, respectively. The
fast discrete wavelet transform computes coefficients by the “pyramid scheme”
depicted in the diagram below:

| X |
| hx | ox |
| hhx || gnx |
hhhx/ [ghhx| h g Q9
ghhhx
hhhhx
Figure 1.

Pyramid scheme for the “fast” discrete wavelet transform.

The functions underlying the expansion are called “wavelets” and “scaling”
functions or “mother” and “father” functions respectively. If {h;} and {g;} are
finite sequences, then we have:

LEMMA 1. There is a unique function ¢ € L>N L' of compact support solving

Hp=¢, [¢=1.
LEMMA 2. The function ¢ = G¢ € L2NL* is a wavelet with compact support.

Meyer and Mallat introduced the multiresolution analysis of L*(R) (or MRA);
it is a sequence of subspaces {V; : j € Z} based on a single function ¢, with
V; def span{¢(27z — k) : k € Z} satistying j < j/ = V; C Vj, W = L2, and
(;V; = 0. Given an MRA, we may put W; = Vit N Vjgq to get L? = &b, w;.
If ¢ is the function in Lemma 1, then {V;} is an MRA and ¢ = G¢ is a wavelet.
Conversely, it is known [L] that if the function ¢ has compact support and the
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set {¢(29x — k) : j,k € Z} is an orthonormal basis for L2, then it comes from an
MRA with a compactly-supported ¢.

There is a fast numerical functional calculus based on the compactly-supported
orthonormal wavelet transform. It is implemented by defining orthogonal projec-
tions P; : f — V; and Q; : f — Wj; these are approximated either by sampling
Pif(k) = [ f(z)¢p(2'z — k) dz ~ 277 f(277k) or by using some higher-order nu-
merical quadrature formula. Thereafter, all computations within the MRA are
performed by iterating the low complexity maps H and G on just those coeffi-
cients (from {P; f(k) : k € Z}) which are larger than some threshold depending
upon the numerical precision of the calculation.

Coifman, Meyer and Wickerhauser [CMW] have described a large “library” of
orthonormal bases generalizing the wavelet basis. These bases consist of “wavelet
packets” which are superpositions of wavelets and are described efficiently by
short sequences of H and GG. Wavelet packets come with independent frequency,
position and duration parameters and can be used to build individually-adapted
orthonormal bases for oscillatory functions and operator kernels.

By using extra filters, it is possible to introduce fast wavelet packet transfor-
mations which decimate by arbitrary numbers. Such transformations generalize
algorithms which decimate by 2. The method produces new libraries of orthonor-
mal basis vectors. We will describe the best basis algorithm for selecting a most
efficient representation from this library. The extra generality of p filters is not
expensive and in fact may clarify certain points. We will prove that the best-basis
algorithm has complexity O(N log, N) for a sequence of length N. We will also
discuss some of the analytic properties and applications of such representations.

Aperiodic filters and bases in 2. Consider first the construction of bases
on [2. Let p be a positive integer and introduce p absolutely summable sequences
fos- .., fp—1 satisfying the properties:

(1) For some € >0, > |fi(m)||m| < oo,

(2) 3, folpm+1i) =1/\/p, for i =0,1,...,p— 1, and
(3) >, film)fj(m + kp) = §;—;0x, where § is the Kronecker symbol.

To these sequences are associated p convolution operators Fy,. .., F,,—1 and their
adjoints Fg, ..., F;_ defined by

F,:?=1? Fuk) = Zfi(m + pk)v(m),
Fr:1? = 1? Ffo(m)= Zfl(m + pk)v(k).
k
These convolution operators will be called filters by analogy with quadrature

mirror filters in the case p = 2. They have the following properties:

LEMMA 2. Fori,j=0,1,...,p—1,

() FFr =1,
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(3) FrF; is an orthogonal projection of 12, and for i # j the ranges of F;'F;
and F7Fj are orthogonal, and
(4) FogFo+--+Fy (F, 1 =1.

PROOF. Properties (1) and (2) follow by interchanging the order of summa-
tion:

FZ-F;v(k’) = szi(m + pk") f;(m + pk)v(k)
m  k

¥ (z o) o -+ ol — k’])) o
k m’

’U(k‘l), ifi =7,
= dijoewu(k) :{ I
’ 0, if i # j.

For property (3) we use (1) and (2): F;F;F;'F; = F/'F;, and F;F,F; F; = 0.
Orthogonality is shown by transposition: (I} Fyz, F; Fyy) = (Fiz, FiF; Fiy) =

To prove (4), let m;(&) = 3" f;(k)et* be the (bounded, Hélder continuous,
periodic) function determined by the filter f;, for j =0,...,p—1. Then f;(k) =
rj(k) is a real number, and each F;F; is unitarily equivalent to multiplication
by |m;|* on L?(—m, ).

Now Plancherel’s theorem gives

27
/0 P (€)1 (€) dE = ij(k;)fj/(k +1p) = 6;_j/0;.

k

In particular, |m;|? has integral 1, and the Fourier coefficient (|m;|*) (Ip) vanishes
if { # 0. This is equivalent to the average of |m;(&)[? over {£,€ + 27/p, ..., &+
27(p — 1)/p} being identically 1.

The same vanishing is true of the Fourier coeflicients of the cross terms m;m;v,
and for those it also holds when [ = 0. Thus, the average of m;(&)m;/ () over
{&,¢€+2n/p, ..., £+ 2m(p—1)/p} vanishes identically. Hence, the conditions on
the filters f; are equivalent to the unitarity of the following matrix:

mo(§)  mo(€+ 2?“) mO(f-F%)
mp—1(§) ey (€ TR

But then S-P1 [my(€)[? = 1 for all £&. Thus Fj Fy+- - -+ Fy_, Fp 1 is unitarily
equivalent to multiplication by 1 in L?(—m, ), proving (4). O

With this lemma we can decompose [? into mutually orthogonal subspaces
Wy L--- LW,_,, where W} = FyFj(I?) for i = 0,...,p— 1. The map F; finds
the coordinates of a vector with respect to an orthonormal basis of W;!. One
level of this decomposition is displayed in the figure below:
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Original signal

Subbands one level below the original signal

Figure 2.

One level of decomposition into p subspaces.

Since each F;W;}! = F;(I?) is another copy of [2, there is nothing to prevent
us from reapplying the filter convolutions recursively. At the mth stage, we
obtain > = Wg* L --- L Wi, where W, = Fyx ... Fr F, ...F, (I*) and
Ny, . ..M is the radix-p representation of n. The map F;, , ... F,, transforms into
standard coordinates in W). For convenience, we will introduce the notations
Fo=F,, ...F,,and F"" = F; ... F} .

The subspaces W, form a p-ary tree. Every node W) is a parent with p
daughters W;?,’ﬁl, ey ;Zi;fl. The root of the tree is the original space (2,
which we may label W for consistency. Call the whole tree W. This tree is a
partially ordered set with minimal element W{, which we call the root. We will
say that W/ € W is greater than W € W if the unique path between W' and
W¢ contains W. The set {W’: W’ > W} will be called the descendants of W.

Now fix m and suppose w belongs to W), where 0 < n < p™ — 1, and
Fw = ey is the elementary sequence with 1 in the kth position and 0’s else-
where. The collection of all such w forms an orthonormal basis of [? with some
remarkable properties. In particular, if p = 2 and the filters Fy and F; are taken
as low-pass and high-pass quadrature mirror filters, respectively, then the spaces
wgr, ..., Wah_, are all the subbands at level m. These have been used for a
long time in digital signal processing and compression. An earlier paper [W]
described experiments with an algorithm for choosing m so as to reduce the bit
rate of digitized acoustic signal transmission. This produced good signal quality
at rather low bit rates.

The tree contains other orthogonal bases of W{. In fact, it forms a library of
bases which may be adapted to classes of functions. The tree structure allows
the library to be searched efficiently for the extremum of certain cost functionals.

To every node in W we associate the subtree of all its descendants. De-
fine a graph to be any finite subset of the nodes of W with the property that
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the union of the associated subtrees is disjoint and contains a complete level
Wg, ..., Wik, for some m. For example, the singleton {W§} is a graph with
m = 0. The following may be called the graph theorem.

THEOREM 3. Ewvery graph corresponds to a decomposition of 1? into a finite
direct sum of orthogonal subspaces.

PROOF. Every graph is a finite set, of cardinality no more than p™ for the m
in the definition. Fix a graph, and suppose that W' and W72 are subspaces
corresponding to two nodes. Without loss, suppose that m; < mg. Then W2
is contained in a subspace W™ for some n # n;. Since the subspaces at a given

level are orthogonal, we conclude that W2 1 Wt

To show that the decomposition is complete, observe that a node contains the
sum of its immediate descendent nodes, or children. By induction, it contains
the sum of all of the nodes in its subtree. Hence a graph contains the sum of all
the subspaces at some level m. But this sum is all of (2. O

COROLLARY 4. Graphs are in one-to-one correspondence with finite disjoint
covers of [0,1) by p-adic intervals I = p~™[n,n+1), n=0,1,...,p™ — 1.

ProOF. The correspondence is evidently W, <+ I]*. The subtree associated
to W, corresponds to all p-adic subintervals of I;*. The details are left to the
reader. O

This correspondence induces a partial order on graphs. We will say that graph
u is greater than or equal to graph v if the cover associated to u is a refinement
of the cover associated to v. This partial order has a minimal element {W}.
For each maximum level L > 0 it also has a maximal element {WL, ..., WPLL,I}-
Some example graphs are depicted in the figures below:

| [ o e o [ o T i

Figure 3.

The “wavelet” graph basis, p = 2.
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=

=

Figure 4.

Some other examples of graph bases, p = 2.

Analytic properties of graphs: continuous wavelet packets. Each fil-
ter F; (and its adjoint Fj*) maps the class of rapidly decreasing sequences to
itself. Likewise, the projections F]"*F!"* preserve that class. In practice, we shall
consider only finite sequences in [2. For actual computations the filters must be
finitely supported as well. Convolution with such filters preserves the property
of finite support. Let the support width of the filters be r, and let z,, be the
maximum width of any vector of the form F7 ...F} (er). Then z = 1 and
Zm+1 = PZm + 7 — p. By induction, we see that z,, = p™ + (p™ — 1)(r — p).

In [CMW] we observed that the basis elements F)'*ej form wave packets
over R. Because they are superpositions of Daubechies’ compactly-supported
wavelets, we will call these basis elements wavelet packets. A slightly generalized
paraphrase of the construction follows. Many of the basic facts we use were
proved by Daubechies in [D].

Let w be a function defined by w(§) = H;’;l mo(€/p?), where my is the ana-
lytic function defined by Fp, as above. Then w has mass 1, decreases rapidly, and
is Holder continuous, as proved in [D]. If mq is a trigonometric polynomial of
degree r, then w is supported in the interval [—r,r]. Arranging that w has r con-
tinuous derivatives requires mg with degree at most O(r). See [D] for a discussion

of the constant in this relation for p = 2. Put w) = w, and define the family



8 MLADEN VICTOR WICKERHAUSER

of wavelet packets recursively by the formula w;’;fj (t) =3 fi(@)w(pt —i).
This produces one function w!™* for each pair (m,n), where m = 0,1
n=01,...,p" — 1.

We can renormalize the wavelet packets to a fixed scale p~. Write

Wy 1o () = pE T (T k).

... and

Then wéo i is a collection of orthonormal functions of mass pL/2, concentrated
in intervals of size O(p~—%). This makes them suitable for sampling continuous
functions. Let z(¢) be any continuous function, and put

oo

(k) = (0, p"Puk ) = / () Pud(p" — k) dr.

— o0

We may use s§(k) as a representative value of z(t) in the interval I} = p~L[k, k+

1). The closeness of the approximation to values of 2 depends, of course, on the
smoothness of z. Suppose that z is Holder continuous with exponent e¢. Then if
to is any point in I,f, we have

|2(to) — (k) (2(to) — 2(8)) prwy(p"t — k) dt| = O(p™").

=1
I

We can also take advantage of differentiability of z if we construct w§ with
vanishing moments. Given d vanishing moments and d derivatives of z, the
approximation improves to |z(tg) — s3(k)| = O(p~9L).

The map z +— s sends L?(R) to [2, and pulls back the orthonormal bases of
I? constructed in the last section. To see this, define s)'(k) = (z,w},, ;). By
interchanging the order of recurrence relation and inner product, we obtain the
formula s = Fs). Thus, the coordinates s”* (k) are coefficients with respect
to an orthonormal basis of W)".

The resulting subspaces of L?(R) form a finer type of multiresolution de-
composition than that of Mallat [Ma]. The coordinates s(k) are rapidly com-
putable. As we shall see, they contain a mixture of location and frequency
information about x.

Ordering the basis elements. The parameters n,m, k, L in w” have a

n,m,k
natural interpretation as frequency, scale, position, and resolution, respectively.
However, n is not monotonic with frequency, because our construction yields
wavelet packets in the so-called Paley (natural, or p-adic) ordering. The following

results show how to permute n +— n’ into a frequency-based ordering.

THEOREM 5. We can choose rapidly decreasing filters Fu,...,F, —1 such
that erL,m,k is concentrated near the interval I kam; and ﬁ;ﬁym,k is concentrated

near the interval I"t, where n — n’ is a permutation of the integers.

n’’

Proor. For the first part, we note that for any family of rapidly decreasing

filters, w) decreases rapidly away from [0,1). The dilate and translate wZ
0 0,m,k

m

of this function to the interval I ,f_ similarly has rapid decrease. Likewise,
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erLmk has the same concentration as u}(ﬁm > since all the filters F; are rapidly

decreasing.

The second part may be deduced from the Fourier transform of the recurrence

relation:

wmtl(€) = <p1 > fj(k>e”f/p> W(E/p) = p~tmy (€ /p)d (€ /p),
k

where m; is the multiplier defined above. Recall that Z?;é Im;(€)]> = 1 and
that mg(0) = 1. Thus, the periodic functions |m;|? form a partition of unity

into p functions, with 0 being in the support of mq alone.

Spectrum of the original
band-limited signal u

- Ny,
< »
Mo m1 mp Filters

- Ny,
< ‘ [

» | R Spectrum of the signal

| | after filtering with mq

| \ |

< i A A Yy,
< »
F 1u ‘ Spectrum after
dilation by 3
o Yy
< »

Y

>

Spectrum after refiltering

FOF]_U /—\ /_\ with mg
< Ny,
N »

Spectrum of
F1*Fg*FoFu
< Ny,
K »

The Spectrum of Wavelet Packets,

Successive application of p = 3 convolution-decimations.

Now suppose for simplicity that we have chosen filters in such a way that

p=3

Figure 5.
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Im; (&) = Yoo Xi%[j7j+1)(£ — 2nk). Such m; may be approximated in
L?(—7,7) as closely as we like by multipliers arising from exponentially decreas-
ing filters. In this simple case, it is immediate that @] (&) = mo(§/P)|(—x,x) 18
the characteristic function of (—m,7), so that @§ ¢ is the characteristic function
of (—mp*,mp"). Likewise, W}, is the characteristic function of 7p* !(—j —
1, —j]Ump=~t[j,j +1). From the recurrence relation, we see that w5, o will be
the characteristic function of the union of the intervals £ap*~™[n’,n’+1), where
n +— n' is a permutation. These intervals cover pX(—m,7) as n=0,...,p™ — 1.
This arrangement of frequencies is depicted in Figure 5. The permutation n — n’
is given by the recurrence relation

n'p+ 7, if n/ is even,

n=n, ifn=0,....,p—1; (n +":{
P (np+3) n'p+(p—1)—j, ifn isodd.

Write n; for the jth digit of n in radix p, numbering from the least significant.
Set n,, = 0 if n has fewer than m digits. Then the recurrence relation implies
that n; = m(n,,,n}), where

Y, if = is even,
o) = { .

p—1—y, ifzxisodd..
For each value of the first variable, 7 is a permutation of the set {0,...,p — 1}
in the second variable. Thus the map n’ — n and its inverse n — n’ are
permutations of the integers. It is not hard to see that these are permutations
of order 2 if p happens to be odd. Otherwise they have infinite order, as may be
seen by considering an increasing sequence of integers n’ all of which have only
odd digits in radix p. O

COROLLARY 6. With filters Fy, ..., F, — 1 chosen as above, we can modify the
recurrence relation for erL,m,k such that u“J,Ll’m,k is concentrated near the interval

I,

PrOOF. Simply reorder the functions w;* by using the alternative recurrence
relation:

ok fi(k)wl(pt — k), if n is even,
Yok fo—1—j(k)wpr(pt — k), if n is odd.

Since we are enforcing n = n’ at each level m, we are composing with the

g0 = {

permutation defined above. Of course, this algorithm has complexity identical
to the original. [

Periodic filters and bases for R%. A sampled periodic function may be
represented as a vector in R¢ for some d. In this case let p be any factor of d.
Introduce as filters a family of p vectors {f; € RY:i=0,....,p— 1}. These are
obviously summable. Suppose in addition that they are orthogonal as periodic

. . . d 7 7
discrete functions, i.e., that >, fi(m)f;(m + kp mod d) = 6;_ ;.
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Let the associated convolution operators be {ﬁ‘o, vy I:"p,l}, defined as above
by

d
E:RY— RY? Fu(k) = Z fi(m +pk mod d)v(m), fork=1,2,...,d/p,
m=1
d/
EFRY? S RY Fro(m) = film+pk mod d)v(k), form=1,2,....d.
=1

hS]

kol

The reduction modulo d is intentionally emphasized. These operators satisfy
conditions similar to those of aperiodic filters:

LEMMA 7.
(1) EFy =0,  ifi#],
(2) }E‘iﬁg* =lap
(3) F;*Fz is a mnlg d[p orthogonal projection on R?, and fori # j the ranges
of F'F; and F}Fj are orthogonal,
(4) FgFo+--+Fy 1 Fy 1 =14
where 1, is the identity on R®.

PrOOF. The proof is nearly identical with the one in the aperiodic case. O

0.1 w8 0.1 wh
0. 05 0.05
50/ 100 \ 150 P00 250 50 1p0 15§ 200 | 250
0.05 0.05
-0.1 -0.1
Figure 6.

Periodized wavelet packets, p = 2, sequencies 3 and 4.

The decomposition suggested by equation (4) may be recursively applied to
the p subspaces R%/? to generate periodic wavelet packets. We must extend the
action of the filter family to R%? in the natural way. For d = p;...py and
0 < n < d, we have a unique representation n = nj + nop; + nzpap; + -+ +
nrpr—1---p1, where 0 < n; < p;. This defines a one-to-one correspondence
between {0,...,d — 1} and an index set of L-tuples I = {(n,...,ng) : 0 <
n; < p;}. We can construct a basis of R? whose elements are indexed by I. For
n=(ny,...,ny) €I, define FL = ﬁ'nLL .. .F,}l, where F' is a family of p; periodic
filters. Then f‘ﬁ*f‘fl is an orthogonal projection onto a 1-dimensional subspace
of R¥. This is shown by induction on the rank in (3). Now let Wt be the range
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of this projection. The collection {u,, = ﬁ‘ﬁ*l :n € I} of standard basis vectors
of WnL will be an orthonormal basis of R%, and the map F,Ll :R? — R gives the
component in the u, direction. Some examples of periodic wavelet packets are
depicted in Figures 6 and 7.

wig

Figure 7.

Periodized wavelet packets, p = 2, sequencies 17 and 18.

These periodic wavelet packets are more useful in practice than the aperiodic
wavelet packets we first considered, because the number of coefficients produced
by the periodic wavelet packet transform is no more than the original number of
signal samples. Of course, this advantage is balanced by the requirement that we
treat the original signal as periodic. Notice that the periodized wavelet packets
at sequencies 2n — 1 and 2n differ only by a shift. This shift, which is always
close to 1/4 period, bears a simple relationship to the binary expansion of n,
but its main significance is that there are really only N/2 distinct frequencies
in a collection of NV periodized wavelet packets. This is a reflection of Nyquist’s
theorem, which states that if we sample a periodic function N times within a
period, then we can only distinguish frequencies up to N/2.

As before, we are not limited to the basis defined by the index set I. Products
of fewer than L filters form orthogonal projections onto a tree of subspaces of
R?. A node arising from a product of m filters will correspond to the subspace
Wt = fﬁ*f‘Z’Rd, where n = ny+ -+ -+ NyPm—1 - - - p1 indexes a composition of
m filters. The tree will be nonhomogeneous in general, although all nodes i levels
from the root will have the same number p; of children. Define a nonhomogeneous
graph as a finite union of nodes whose associated subtrees form a disjoint cover
of some level m < L. A graph theorem holds for this tree of subspaces as well.
It and its corollary may be stated as follows:

THEOREM 8. FEvery nonhomogeneous graph corresponds to an orthogonal de-
composition of R¢. O

COROLLARY 9. Graphs are in one-to-one correspondence with finite disjoint
covers of [0,1) by intervals of the form I™ = (py...pym) " tn,n+1). O
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This correspondence also induces a partial order on nonhomogeneous graphs.
We say that u is greater than or equal to v if the cover associated to u is a
refinement of the cover associated to v. This partial order has both a minimal
element {W{'} and a maximal element {W",..., Wk ~}. Any permutation

of the factors of d gives a (possibly different) set of bases.

Concentration criteria for the best-adapted basis. Define an additive
information cost function on I? to be any functional M : [? — R™ satisfying

(1) M({x;}) = Z m(|z;|)for some function m = m(t),

(i) M({0}) = 0.

Some useful information cost functions are the threshold counting norm #{k :
|zx| > €} and the bit-length norm 7, log(1 + |z|/€).

Let U be a finite library of orthonormal bases of [2. A vector x has coefficients
T, in the basis u € U, where z,, (k) = (z, u(k)) for u(k) € u. The information cost
of a particular representation may be measured by M (z,). Also, the information
contained in the the choice of u is log |U|, where |U| is the cardinality of the
library. Define a best-basis for = as any element u € U for which M(z,) is
minimal. The best-basis information cost of x in the library U is therefore
M(z,) + log |U].

Our goal is to find an efficient algorithm for reducing the information cost of
vectors in a class. The library U, which depends on the class, should be very
large but easy to search. It takes a naive algorithm O(|U|) operations to find the
least-information representation of a fixed vector x. This procedure is inefficient
because it requires a global reévaluation of the information cost for each basis in
the library.

We can evidently reduce the information M (z@y) by reducing M (z) and M (y)
individually. Such a procedure is local in the following sense. Suppose that 2
orthonormal bases v and v in a library U partially coincide, and we write x, =
Ty X Ty and Ty, = Tyny X Tr. Then M (z,) < M(x,) <= M(zy) < M(z,).
The decomposition and individual reduction of M may then be reapplied to the
pieces T, and x,.

Let W be a tree of subspaces of [2. If W € W is a node, then the associated
coordinate map is Fyy, and the associated orthogonal projection can be denoted
by Fj,Fy. Every node W may be regarded as the Cartesian product of its
daughters, or more generally of the elements of any graph of its descendants. Let
U be the library of bases corresponding to graphs in W. Then each element of U
has a unique factorization into a Cartesian product of the standard bases of the
subspaces in the associated graph. Namely, if = is a sequence and if u is a basis
corresponding to some graph G C W, then z, = X [, Fwa. Consequently,
M(zy) = Y weq M(Fwaz). To find the best basis, we must choose a graph of
those subspaces W which contribute the least information. But this large choice
may be factored into a sequence of small subchoices.
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Recall now our definition of a partial ordering on graphs through the tree W,
which is inherited from our definition of the partial order on trees. We must keep
track of the lowest achievable measure of information M as we progress down the
tree to its root. This may be defined inductively. We must suppose now that the
tree is finite with L levels, so that its set of graphs has a maximal element. Let
G, be this maximal graph in W, and for W € G, set M}y, () = M(Fwz). Then
for W € W let M;, () = min{M;;(z) : V> W}. This functional M, records
the minimum value of M (Fy z,) achievable by bases of W coming from graphs
through subtrees above node W. Evidently, if W is the root (or minimal) node
of W, then My, (z) = M(zu,,,) is the best-basis measure of information for the
vector x.

The search algorithm may now be described. Mark all maximal nodes W € G,
as “kept.” Suppose now that node W has children Wy,...,W,. Mark W as
“kept” if My, (z) < My (z) + --- + My, (x); otherwise mark it as “not kept”.
Namely, keep W if including it reduces M*. Observe that we can compute
Mgy (x) = min{ M (Fyx), My, (v)+---+ My (z)} without having to search the
entire subtree above W. We may proceed down the tree to the root, at which
point all the nodes in the tree have been marked either as “kept” or as “not
kept.” We claim the following:

PROPOSITION 10. The union of the minimal “kept” nodes is a graph corre-
sponding to the best-basis representation of x.

Proor. That it is a graph is clear by induction. Every minimal “kept” node
W is the root of a subtree containing some of the maximal nodes of W. This
set of subtrees is disjoint, since if two subtrees intersect then one must contain
the other and so their roots cannot both be minimal. The union of these disjoint
subtrees covers all of the maximal nodes of W, which form a complete level of
the tree.

So call this graph G. Notice that the sum )y, My (x) over the minimal
“kept” nodes W € G is equal to My, (z), where Wy is the root of W. By
the remarks immediately above the proposition, this is the minimum achievable
information cost. [

Operations required to find the best basis. We may count the opera-
tions in our search algorithm above as follows. Let E(W) be the number of oper-
ations required to evaluate M (Fy x), and let D(W) be the number of children of
the node W € W. Then it will require } Sy ., E(W)+3 ¢, [E(W)+D(W)]
operations to construct the functional M* on the tree and to mark the appro-
priate nodes as “kept.” Finding the minimal “kept” nodes requires a depth-first
search of W, which takes at most |W/| operations.

For definiteness, consider the example of a homogeneous p-adic tree generated
by periodizing a family of p filters. Suppose we start with a vector z of N = p*
components and develop the tree of its representations W as far as we can,
namely L levels. We can label the nodes W" as before. We observe that
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F™z has pL~™ components so that E(W™) = cpX~™, where ¢ is the number
of operations required per non-zero coefficient to compute M. This tree has
p™ nodes at level m. D(W) = p for all W € W, so it requires Zf;gl ep® +
S0 Sieg lep™ ™ 4] = " +p(p" ~1)/(p=1) = O(p") = O(N) operations
to build M*. Then [W| =35 pm = (pL+1 —1)/(p — 1) = O(p*) = O(N), so
that the entire search takes O(N) operations for a periodic vector of length N.

The library of graphs through a tree grows rapidly with the number of levels
in the tree. Let |Ur| be the number of bases in a p-adic tree of L levels. Then
|Ur| satisfies the recurrence |Up41| = 1 4 |Ur|P, which is easily estimated as

greater than 27" = 2N/P. We list the first 7 values |Up|, ..., |Us| for p = 3:

1, 2, 9, 730, 389017001, 58871587162270593034051002,
204040901322752673844230437877671861543858084850895762746141813554591014612009

By contrast, one may also list the number of operations required to find the
best basis representation and information of a vector of length N = 3% in a tree
of L=0,...,6 levels. We shall suppose that evaluating M requires 3 operations
per coefficient, so that the operation count is at most %(?;L+1 —1).

{ 3,12,39,120,363,1092,3279}

This is a good example of combinatorial explosion tamed by an efficient search
algorithm.

The entropy criterion and estimates. Let o € [2 and denote by ||z| the
usual norm: |[|z||? = Y, |zx[?. Then the sequence defined by |zx|?/||z||* gives
a probability distribution of the energy of x. This distribution has a Shannon
entropy which we shall denote by H(z) = — >, (|zx|?/||z[|?) log(|zk]?/||z]|?),
where the summand is interpreted as 0 for any zj = 0. This entropy is a well-
known measure of the information of a distribution.

We may also use the L?log L? norm rather than entropy. Denote this by
H(z) ==Y, |zx|*log|zx|* with the same convention for the case ), = 0. Note
that

H(x) = H(x)||z] = + log [|=]*

H is an additive measures of information. H is not, but the above relation
guarantees that whenever ||z|| = ||y||, we have H(z) < H(y) < H(x) < H(y).
Suppose that u is a best basis for z with respect to H. It is clear that this will
also be the element for which the more classical H(z,,) is minimal, and also that
for which expH(z,) is minimal. The exponential of entropy has the following
suggestive property:

LEMMA 11. Ifz € [? is a sequence of 0’s and 1’s, then exp H(x) is the number
of 1’s in the sequence. [

Notice that exp H(z) = ||z[|? exp (H(z)|z||7?).
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Suppose now that z € [? is any sequence, and we project it onto a sequence
ye defined for € > 0 by

{ 0, if |z)? < eexp (—H(z)||z]72),
Yk = .
Tk, otherwise.

Then there will be at most exp (—H (z)||z]|~2) /€ nonzero terms in y. The energy
error ||z — y||? will be the sum of the squares of the omitted terms.

Existence and construction of filters. We can construct finitely sup-
ported filters of any support length greater that p. Longer support lengths allow
more degrees of freedom. Let M be a positive integer and consider the problem
of finding filters of length pM, i.e., p trigonometric polynomials mo,...,mp_1
of degree pM for which the above matrix of values of m; is unitary. By a con-
struction similar to Pollen’s in [P], this is equivalent to finding an element of the
group SU(p, C|z,1/z]) which is the product of M inverse factors.

Given any pair P, @ of (perfect reconstruction) quadrature mirror filters, we
can build a family of p = 29 filters by taking all distinguishable compositions
of P and @ of length ¢. Alternatively, we can take all distinguishable products
of ¢ filters. This method serves to build filters for g-dimensional signals. Given
a signal s = s(z) = s(z1,...,24), and J = j,...j1 radix 2, we can define
29 filters F; by taking a one-dimensional filter for each dimension: Fjs(z) =
Zkh_”kq T (k1 +pxy) ... fi, (kg + prg) s(k1,..., kg). Such filters are useful for
image processing and matrix multiplication.

Gopinath and Burrus [GB] have given a construction of “multiplicity p” wave-
lets similar to the one in this paper. Their scheme for generating filter families is
based on “cosine modulation,” and they provided examples of filter families with
Holder regularity. In practice it is desirable to have smooth basis elements, since
a certain degree of smoothness (one derivative in L?) is needed to have finite
variance in frequency. We can define a smoothness property for filter sequences:

DEFINITION. A summable sequence f is a smooth filter (of degree d < o)
if there is a monzero solution ¢ in L*(R) N L*(R) N C%4R) to the functional
equation

¢(a) = p' > f(m)d(pr + m).

Daubechies has shown in [D] that finitely supported filters of any degree of
smoothness may be constructed in the case p = 2. An obvious consequence is
that smooth filters exist in the case p = 29. For arbitrary p, Lundberg and
Welland [LW] give a construction of p-families of filters whose wavelet packets
are m-~differentiable, where p and m are arbitrary.
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