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ABSTRACT: This tutorial paper presents a meta-algorithm for designing a transform
coding image compression algorithm specific to a given application. The goal is to select
a decorrelating transform which performs best on a given collection of data. It consists of
conducting experimental trials with adapted wavelet transforms and the best basis algorithm,
evaluating the basis choices made for a training set of images, then selecting a transform that,
on average, delivers the best compression for the data set. A crude version of the method
was used to design the WSQ fingerprint image compression algorithm.
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1 Introduction

No single image compression algorithm can be expected to work well for all classes of digital
images. The sampling rates, frequency content, and pixel quantization all influence the com-
pressibility of the original data. Subsequent machine or human analyses of the compressed
data, or its presentation at various magnifications, all influence the nature and visibility
of distortion and artifacts. Thus compression standards like those of the JPEG committee
[1], established for a “natural” images intended to be viewed by humans, do not satisfy the
requirements for compressing fingerprint images intended to be scanned by machines. In
that particular example, it was necessary to develop a new algorithm WSQ [2].

Both JPEG and WSQ are examples of transform coding image compression algorithms.
That class provides a rich selection from which custom compression algorithms may be
chosen. This paper presents a meta-algorithm for rationally and automatically choosing
one of them to suit a particular application. It focuses on the transform portion of the
compression algorithm: the best basis method is used to optimize it to provide the best
average compression of a representative set of images, subject to speed constraints. A crude
version of the method was used to design the WSQ fingerprint image compression algorithm.
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Figure 1: Generic transform coding image compression device.

It and other methods for chosing a compression algorithm rely on human judgment and
subjective experimental results. Two of the many articles comparing various wavelet-based
compression methods are references [3] and [7].

2 Transform coding image compression

The generic transform coding compression scheme is depicted in Figure 1. It consists of
three pieces:

o Transform: Apply a function, which is invertible or lossless in exact arithmetic, which
should decorrelate the pixels in the image. It does this by decomposing the image
into a superposition of independent patterns; it produces a sequence of floating-point
amplitudes which are the intensities of the new components.

e Quantize:  Replace the transform amplitudes with (small) integer approximations.
This is the lossy or non invertible part of the algorithm, where all the distortion is
introduced.

e (Code: Rewrite the integer stream of quantized transform coefficients into a more
efficient alphabet, so as to approach the information-theoretic minimum bit rate. This
operation is akin to a table lookup, and is invertible.

These three steps are depicted in Figure 1.

To recover an image from the coded, stored data, the steps in Figure 1 are inverted as
shown in Figure 2. The first and third blocks of the compression algorithm are exactly
invertible in exact arithmetic, but the Unquantize block does not in general produce the
same amplitudes that were given to the Quantize block during compression. The errors
thus introduced can be controlled both by the fineness of the quantization (which limits the
maximum size of the error) and by favoritism (which tries to reduce the errors for certain
amplitudes at the expense of greater errors for others).

The compression ratio produced by such an algorithm is computed by dividing the size
of the input file by the size of the output file. It thus takes into account all of the side
information stored with the output file that is needed for reconstruction. Roughly speaking, if
the coding step is perfectly efficient, the compression ratio is maximized for a given distortion
when the transform and quantize steps produce a sequence with minimal entropy. However,
since minimal entropy is hard to characterize and harder achieve, it is better to aim at a



Storage Decode 9, Unquantize 9, Untransform R_en?tor:d
imag

Figure 2: Inverse of the generic transform coder: the decoder.

broader target: a sequence with almost all of the values being zero. Such a sequence will
have a low, if not minimal, entropy, since its value distribution with be highly peaked at
ZETO.

This paper concentrates on the Transform operation. The goal is to choose, from a large
family of wavelet, wavelet packet, and local trigonometric transforms, the one which can
be expected to yield the largest fraction of negligible amplitudes on data represented by a
training set. Those will be quantized to zero in exchange for a given degree of distortion,
yielding the biggest peak at zero in the value distribution and resulting in the best compres-
sion. It will assumed that the transforms are orthogonal or nearly orthogonal, so that their
condition number is close to 1 and they introduce no significant redundancy.

3 Custom transforms

There are two fast ways to decompose images at the transform step: splitting into small
blocks of pixels and then applying some fast transform to the blocks, or splitting the whole im-
age into frequency subbands by convolving with short filters. Both methods cost O(P log P)
operations for an P-pixel image. Detailed formulas and a proof of the complexity statement
can be found in Reference [6], so only a brief summary will be presented here.

In the pixel splitting scheme, the image is cut into blocks, either of fixed or variable size,
but small enough so that the intensities of all pixels contained within a block are correlated.
This cutting is depicted in Figure 3. Then decorrelation is performed by applying the
two-dimensional discrete cosine transform (DCT) to the blocks. This method is used in
the JPEG still picture image compression standard [4]. The resulting amplitudes represent
spatial frequency components in the blocks. Because digitized images are often limited in
their spectral content, most of the amplitudes in each block will be negligible. To maximize
the proportion of negligible amplitudes, the blocks should be chosen as large as possible
subject to the constraints that (1) only a few spatial frequencies are present in each block,
and (2) describing the block boundaries does not create too much side information.

In the subband splitting scheme, a low-pass and a high-pass filter are used along rows and
columns to split the image into four subimages characterized by restricted frequency content.
This process is repeated on the subimages, down to some maximum depth of decomposition,
resulting in a segmentation of frequency space into subbands. Two such segmentations are
depicted in Figure 4; the one on the right is used in the WSQ fingerprint image compression
algorithm [2]. The resulting amplitudes again represent spatial frequency components, com-
puted over portions of the picture determined by the depth of the subband and the location



Figure 3: Division of a 128 x 128 pixel image into 8 x 8 blocks, as in JPEG, or into blocks
varying from 4 x 4 to 32 x 32.

of the amplitude in its subband. Again, for images of limited spectral content, most of these
amplitudes will be negligible. The two example subband decompositions are approximately
radial with respect to the “origin” in the upper left hand corner; this works well for isotropic
images, i.e., where no direction is favored over any others.

4 The joint best basis

Both splitting schemes can be organized as quadtrees to a specified depth, with the selected
transform determined by the leaves of a subtree like the one depicted in Figure 5. To
choose the subtree and thus the transform, each member of a representative training set of
images is decomposed into the complete quadtree of amplitudes. Then the squares of these
amplitudes are summed into a sum-of-squares quadtree. Using an information cost function
such as “number of nonnegligible amplitudes”, the sum-of-squares quadtree is searched for
its best basis, which is the one that minimizes this cost ([6], p. 282). Figure 6 depicts this
algorithm. The best basis for the ¥ quadtree is the joint best basis for the training set of
images 1,2,..., N. That is the transform which produces, on average, the largest number of
negligible output coefficients.

To find the best basis requires examining each coefficient in the quadtree and examining
each subband or pixel block at most twice, which means that the complexity is O(P log P)
for P-pixel images. To find the joint best basis requires building the sum-of-squares tree
first, which dominates the total complexity with its O(N Plog P) cost for a training set of
N P-pixel images.

Of course, the joint best basis transform is only optimal within its own class, and the
class is determined by the technical details and mathematical properties of the splitting
algorithm. If these constraints were removed and the search performed over all orthonormal



Figure 4: Division of an image into orthogonal wavelet subbands to level 5, or into the WSQ
subbands. Frequencies increase down and to the right.

Figure 5: Splitting schemes produces quadtrees; custom bases are determined by the leaves
of a subtree such as the one shown here, shaded for emphasis.
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Figure 6: A joint best basis from a class of splitting algorithms is determined by a sample
set of N images.

transforms, then the joint best basis will be the Karhunen Loéve (KL) or principal orthogonal
basis [5], which is known to be the minimizer of the number of nonnegligible amplitudes.
With the constraints, whose purpose is to speed things up, the chosen transform is just an
approximation to KL.

5 Choosing the best transform from multiple classes

There is a meta-algorithm for relaxing the constraints a bit while preserving the speed.
Namely, a custom transform can be chosen by checking many classes of splitting algorithms
in order to further increase the expected number of negligible coefficients. This scheme was
first proposed by Yves Meyer, and is depicted in Figure 7. At the end of each path is a cost
figure, the expected number of nonnegligible coefficients for the training set of images. The
path that leads to the lowest cost determines which algorithm should be used to find the
custom transform for compressing the images represented by the training set.

Examples of different classes are the different subband splitting schemes associated to
different conjugate quadrature filters ([6], Chapter 5 and Appendix C), or the adapted local
trigonometric bases determined by different windows ([6], Chapters 3 and 4).

6 Conclusion

Given a training set of images, a transform coding image compression algorithm may be
rationally chosen from a class of fast splitting algorithms. The choice criterion is a cost func-
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Figure 7: A meta-algorithm for deciding which splitting algorithm to use with a particular
class of images.

tion that, when low, yields high compression ratios for transform coding image compression.
The method works for wavelet packet and local trigonometric transforms and thus produces
well-conditioned compression and decompression methods of complexity O(P log P) for P-
pixel images. Searching for the best choice itself costs O(N P log P), where N is the number
of training images.
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