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Abstract

The wavelet representation of a time-dependent signal can be used
to study the propagation of energy between the different scales in the
signal. Burgers’ evolution operator (in 1 and 2 dimensions) can itself
be described from this scaling point of view. Using wavelet-based al-
gorithms we can depict the transfer of energy between scales. We can
write the instantaneous evolution operator in the wavelet basis; then
large off-diagonal terms will correspond to energy transfers between
different scales. We can project the solution onto each fixed-scale
wavelet subspace and compute the energy; then the rate of change of
this energy by scale can detect and quantify any cascades that may
be present. These methods improve the classical Fourier-transform-
based scale decomposition which uses the notion that wavenumber
equals scale. The wavelet basis functions underlying our scale de-
compositions have finite, well-defined position uncertainty (i.e., scale)
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whereas Fourier basis functions have formally unbounded position un-
certainty.

1 Introduction

The difficult problem of turbulence in fluids has spawned a rich variety of
ideas and notions of measurement. A fluid flow contains a very large number
of degrees of freedom, and yet there are certain identifiable features which can
be described at least approximately with a small number of parameters. For
example, in viscous fluids the large regions of high vorticity seem to evolve
in a coherent manner. The number of such regions is necessarily limited and
their sizes and shapes change quite slowly. These have been quite successfully
modelled by point vortices and particle mechanics [3], point vortices with a
few extra moments [2|, and contour dynamics [15], all of which techniques
replace the grid point approximation by a much lower rank approximation
and rewrite the equations of motion in terms of the new parameters. It
is also possible to compute various averages and show from first principles
that they are conserved, or change monotonically, or have specified behavior
when a particular term of the differential equation is dominant. Such quanti-
ties include total energy, total enstrophy and average velocity, which can be
calculated using Newton’s laws of motion or other conservation principles.
The famous 1941 paper by Kolmogorov [10] predicted that the energy
spectrum of the velocity field of fully developed turbulence should be mod-
elled by a k=5/3 power law (in the wavenumber k). One intuitively compelling
explanation for this relationship is that energy flows from large-scale coherent
velocity fields to small-scale dissipative eddies. However, it has been diffi-
cult to quantify this notion, partly because it is difficult to define scale in a
satisfactory manner. Traditionally, scale has been set equal to wavenumber
k in the Fourier transform of the velocity field. The energy at a given scale
was then defined to be the sum of the squares of the Fourier coefficients in a
certain range of wavenumbers. Unfortunately, the operation of restriction to
a range of wavenumbers is ill conditioned in any norm but L?, it is equivalent
to projection onto basis functions which have no well-defined scale, and can
mislead the aforementioned intuition simply by its mathematical ill-behavior.
Our goal in this paper is to replace the Fourier wavenumber “scale” projec-
tion with a mathematically better-behaved alternative of wavelets. We can



then exploit this new wavelet scale projection to measure energy transfers
between scales in a particular solution to Burgers’ equation, a simplified fluid
flow equation [5].

For turbulent flows, Kolmogorov, Kraichnan [11] and Batchelor [?] pre-
dicted that the energy repartition depends on the scale of the structures
that appear in the flow. Wavelets are an especially suitable tool for prob-
lems involving scale, since every wavelet has a well-defined scale of its own.
We can define the energy of a function at a scale o simply by summing the
squares of the amplitudes of all wavelets of scale ¢ in the function. We can
then ask how energy is transferred between scales in an evolving turbulent
flow. To approach this question, we will consider Burgers’ equation in one
dimension, where exact analytic expressions of the solution are known for
some initial condition. We will first see how the small scale wavelets in the
decomposition of the solution collect more and more energy as the evolution
proceeds and approaches singularity. We will also describe the time-varying
Burgers evolution operator corresponding to a known evolution. We will
conjugate it into a matrix with respect to the wavelet basis, where scales can
be easily identified. We will observe those matrix coefficients which couple
the different scales and transfer energy between them. We can thus observe
the creation and destruction of small-scale phenomena such as rapid fluc-
tuations or “shocks.” We will also repeat a part of this analysis for the
two-dimensional Burgers equation, to see if our surmises hold in that more
complicated situation.

In related work [7], an intial parameter reduction by projection onto just
the largest wavelet packet coefficients was compared to parameter reduction
by projection onto low wavenumbers. This provides another test of the no-
tion that energy cascades from large wavelengths to small. The main purpose
of that paper, however, was to test how well the reduced-parameter flow pre-
dicts the original, reference flow; it demonstrated that projection onto large
wavelet packets is substantially better than projection onto low wavenum-
bers, in both a deterministic and statistical sense. In other related work [12]
an adaptive algorithm used wavelets to perform the numerical integration of
Burgers’ equation. When the energy in some range of small scales exceeds
a threshold in a region, then the solution is resampled more finely in that
region. While the methods discussed in this present paper are intended only
to suggest how to quantify certain intuitive notions, they are oriented to-
ward improving the numerical solution of fluid dynamics problems by similar
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adapted algorithms.

2 Burgers’ evolution equation

Burgers’ equation is the first part of the following initial value problem:

%—f(a:, t) = —%%Fa(az, t) + vAF(z,t); F(z,0) = Fy(z). (1)
The constant v is the viscosity of the fluid and the function Fy = Fy(x) is
the initial state at time ¢ = 0.

Let us consider one example: Fy(z) = sin(2rx). The graph in Figure 1
shows the evolution of this function at times 0, 0.08, 0.16, 0.32, 0.5, 0.75,
and 1.00. The two arcs of the sine, one positive the other negative, are
propagating in opposite directions to produce a steep slope at x = 32/64.
The dissipative term AF' produces the vanishing effect: the total energy in
the solution tends to 0 as time increases. Without dissipation the slope at x =
32/64 would become infinite and a discontinuity would appear; the viscosity
term controls how close the solution gets to singularity before dissipating.
The apparition of a near-discontinuity means that the amplitudes of small-
scale wavelets in the solution are increasing, since they contribute the large
derivatives. We can effectively see this phenomenon in Figures 2 and Figure
3. The graduations between 0 and 100 represent time; the others show the
index of the wavelet coefficients. The first wavelet coefficient is the mean of
the signal (actually 0), the second is the biggest-scale difference coefficient,
and so on. The last 32 are the smallest scale difference coefficients, since
we took 64 samples of the signal. We use the “Coiflet” wavelets based on a
quadrature mirror filter with 30 taps [6] because they have a large number
of vanishing moments and are nearly symmetric.

We computed the evolution with a Godounov scheme applied to the 1-
periodic signal, using a space-step of 1/64 and a time step of 1/100. Figures
2 and 3 show the evolution of wavelet coefficients. They indicate that the
energy in the biggest-scale wavelets is decreasing while the energy in the
smallest-scale ones is increasing. In the view from below (Figure 3), we ob-
serve that one of the big-scale amplitudes already begins to decrease at time
zero. Figure 2 shows that the maxima of the smaller-scale amplitudes are
reached later and later with decreasing scale. This last aspect can be better
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Figure 1: Evolution of sin(27x) over [0;1].
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Figure 2: Evolution of the wavelet coefficients.
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Figure 3: Same 3D representation, seen from below

seen on Figure 4 which shows the absolute value of the wavelet coefficients
in gray scale: white is zero, black is the maximum.

Ultimately, all the wavelet coefficients decrease to 0, because through
dissipation the energy in the signal decreases to 0.

3 Burgers’ evolution operator

We will now try to extract inter-scale energy transfer information from the
evolution operator of Burgers’ equation. In fact, we will use the infinitesimal
generator of the evolution, which is the Jacobian of the right-hand side of
Equation 1.

Let G be the matrix of our transformation using the Godounov scheme
in the normal space, and W be the matrix of our wavelet transform. Let
u(z,t) (or simply u(t) but actually u(iAx,nAt)) be our signal, and U(t) be
its wavelet form. We have:

u(t + At) = Gu(t); Ut + At) = (WGWHU () (2)

Figure 5 shows the coefficients of K = WGW ™! at times t = 0.00 on
the left and ¢ = 0.33 on the right. In the density plots, black means the
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Figure 4: Time evolution of the wavelet coefficients in gray scale

minimum and white means the maximum, with gray being zero. We are
using the classical form of simple operators in the wavelet basis, the so-called
“standard form” of G. Beylkin, R. Coifman and V. Rokhlin (see [4]). The
“fingers” which lay across the matrix density plots represent strong coupling
between wavelet scales. The main diagonal is the coupling between wavelets
at equal scales, the upper triangle fingers are couplings from large scales to
small scales, and the lower triangle fingers are couplings from small scales to
large scales.

The isolated dark points in the last row and last column of each matrix
are not artifacts of the periodization, but are due to the periodicity of each
block itself in the matrix, and also to the discontinuity introduced by the
Godounov scheme in the derivative at this point.

Unfortunately, it is not easy to read Figure 5. We see in the right-hand
picture that the scale interactions mainly occur in the high-gradient zone of
the signal near the “midpoint,” where the large amplitudes in K show up as
fingers. We can observe that the strongest interactions take place between
nearby scales, since the variation from gray is strongest along the middle
fingers and decreases away from the main diagonal. We can also say that
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Figure 5: Burgers’ evolution operating on wavelet components

the interactions between the largest and smallest scales become stronger as
the solution evolves, since the outside fingers become thicker as t increases.
But it is impossible to say what kind of interactions these are, since the
coefficients are alternately positive and negative.

To see where the energy is concentrated, we now study the effects of
Burgers’ evolution operator on the absolute value of the wavelet coefficients
in our signal. The sums of these absolute values is what we shall call “energy.”
Let |U| denote the absolute value of these coefficients, let S be the diagonal
“sign matrix” made of the signs of these coefficients, and let I be the identity
matrix. We have:

ol U+ AL - |U|@)

&
—
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ot , At
= & (IWGu| = [Wul)(1) (4)
= (WGW W] — SWu) (1) (5)
- éqwaw—lsswm—swu)(t) (6)
~ Ait(swewls—mm(t) (7)



The last approximation assumes that WU(t + At) and WU(t) have the
same sign matrix. Since the wavelet coefficients are continuous, slowly vary-
ing functions of time, this assumption will only be violated by coefficients
close to 0 whose error contribution is therefore small. The new matrix
R = SWGW=1S — I is not really simple to understand either, even if we
only keep the sign of its most significant coefficients, the ones greater than
0.5% of the maximum coefficient, as in the right picture of Figure 6. The
matrices shown in that figure have the following block structure:

141 | o1 | 1/-1 2/-1 5/-1
-1/0 | o/0 | 1/0 5/0
an o | 11 5/1
a5 | o5 | 1/ 2/5 5/5

Each block i/j represents the part of the matrix corresponding to the
influence of scale ¢ on what the scale 7 will be at the next time step. Scale
—1 is the mean of the signal, a single value. Scale 5 is the smallest scale and
contains 32 components.

In order to get more readable results, we now forget about the space
localization of the signal and only look at how the different scales act upon



Figure 6: Evolution matrix of |U]

each other. We sum the amplitudes of each block of the evolution operator
to one characteristic value, the contribution of all wavelets at one scale 7 to
the sum of the absolute values of the wavelet coefficients for another scale j.
To do this we first set to zero all coefficients of the evolution matrix outside
the block (i/7), then multiply it by |U| and sum all the coefficients of the
result. We thereby obtain a “matrix of energy transfers between scales.” It
displays the expected phenomenon: the energy of the biggest scales flows to
the smallest ones. Figure 7 shows an example of this matrix at one particular
time. It is possible to compute this matrix at each time step and to prepare
an animation of the result; this has been done, and the data is available by
anonymous ftp [9].

The contributions of the different scales can determined fom the sign of
the histogram in Figure 7. The coefficients above the diagonal are negative,
while those below the diagonal are positive. The negative superdiagonal ele-
ments show that the small scale components draw energy from larger scales.
Likewise, the positive subdiagonal coefficients indicate that big scale com-
ponents contribute energy to the creation of small scale components. The
structure of this energy transfer matrix changes rapidly between t = 0.00
and t = 0.15, and then remains stable in the form shown above.

If we now want to know how the energy concentrates itself in certain
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Figure 7: Matrix of interactions between scales at time equals 0.2

11



20 t =0 20 t=0. 05 20 t=0.1
15 15 15
10 10 10 M
5 5 5
7 3
1 4 1 3|4 1 3|4
5 5t 2L 5
-10 _ -10 _ -10 _
20 t=0. 15 20 t=0. 2 20 t=0. 25
15 15 15
10 — 1 10 10
5 5 __J___L__l__j 5
112 3|4 112 3|4 1l2 3 =4!s
-5 -5 -5
-10 - -10 1 -10 -
20 t=0. 3 20 t=0. 4 20 t=0.7
15 15 15
10 10 10
5 5 5
112 3 4 1 Lz—LE_rA4—54—e4 7 1 =213 4
-5 -5 -5
-10 -10 -10

Figure 8: Time derivative of the “energy” contained in each scale
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scales, we only have to multiply this matrix by the vector (1,1,...,1,1) to
sum over all contributions. We then obtain the results in Figure 8. From
this collection of snapshots, taken at different times, we can see the derivative
evolution of the sum of the absolute values of the wavelet coefficients for each
scale: the scale whose energy increases fastest changes with time, from scale
3 (where there are 4 coefficients) at time ¢t = 0.00 to scale 5 (where there are
16 coeflicients) at time ¢ = 0.70. Note that the scale graduations are shifted
by one. The energy comes from the biggest scales, where it always decreases.
The last three pictures show the final phase of the evolution, when the signal
collapses. All appears as if Burgers’ evolution operator is propagating the
energy down through the scales from the biggest ones to the smallest ones.

4 Other examples

We now study a less particular example, one in which there is propagation of
the region where the small scales develop. This example is obtained simply
by subtracting the constant % from our sine function.

0 20 30 40 50 60

-0.5¢}

-1.5¢

Figure 9: Evolution of sin(27z) — 0.707, x € [0, 1].

Figure 9 shows the propagation we get with this signal. The graphs show
the signal at times 0.00, 0.08, 0.16, 0.24, 0.32, 0.50, 0.75 and 0.99. The two
inflection points of the signal translate with a slowly varying speed which we
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Figure 10: Time evolution of the absolute value of the wavelet coefficients in
the previous figure, in gray scale
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may call the speed of propagation. Because of this propagation, we observe
dyadic artifacts due to the relative motion between the signal and the wavelet
centers. For instance, when the function sin(27z) is translated along the z-
axis by amounts which are less than the nominal support of the smallest
wavelet, its periodic wavelet transform on [0, 1] changes rather dramatically
with each translation step. Such translation produces not only phase shifts
in the wavelet coefficients, as is the case with Fourier coefficients, but also
rather complicated amplitude variations. The amplitudes at each wavelet
scale oscillate several times with a mean period roughly equal to the scale
length divided by the propagation speed.

Figure 10 shows the evolution of the wavelet coefficients of the signal in
Figure 9 in gray scale. Notice that the large amplitude, small-scale wavelets
cluster around the signal’s region of largest derivatives, which propagates.
Note too that the smaller-scale wavelets develop significant amplitudes later
and later in the evolution. Compare this picture with Figure 4 and observe
that the lack of symmetry in the solution does not interfere with the appear-
ance of small-scale wavelets.

The spatial localization of wavelets is used only to define a mathematically
acceptable notion of scale. Since we are interested only in the scale of the
energetic components, and not in their spatial location, we can average over
all shifts the absolute value of the wavelet amplitudes at a given scale to get
a shift-invariant measure of energy in that scale. That is to say, we define the
energy in a scale i to be the average over all translates by 1 of the sum of the
absolute values of the amplitudes of all wavelets at scale i. We can compute
these sums simply by making an average over all the possible shifts of the
signal. In fact, it is possible to do this average over two shifts for the smallest
scale, four shifts for the next bigger, and so on. We need all the shifts only
for the biggest scale; the sum at scale s (with s = 1 being the smallest scale)
is a 2% periodic function of the shift. Such averaging will smooth out most
but not all of the oscillations; there will still be some oscillations which are
caused by translations on a scale smaller than that of the finest spacing of
our dyadic grid. This unavoidable portion of the oscillation phenomenon can
be seen on Figure 11, showing the same thing as Figure 8, but for the shifted
sine propagation.

Oscillations make reading the energy difficult. We must determine the
amplitude of the oscillations despite their irregularity, in order to do the same
as what is shown in Figure 8. After averaging over shifts we obtain a mean
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Figure 11: Time derivative of the “energy” contained in each scale, with

averaging over shifts.
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period for the remaining oscillations. The results of this averaging are shown
in Figure 10. The six first pictures can be interpreted exactly the same way
as for sin(27z), but the three last show that this interpretation breaks down
with time. For example, between ¢ = 0.20 and ¢t = 0.21 there is an important
variation of the derivative of the energy located in each scale.

The interaction matrices in Figures 12-15 are quite interesting, too. They
show that as soon as each scale develops enough energy, it positively affects
the immediately finer scale. At the beginning, we can also see that some big
scales transfer their energy to almost all finer scales. We can also see that
after a certain time, the smallest scales contribute negatively to the greater
scales.

Although the experiments are not included in this article, we remark that
the same type of energy transfer occurs if we start with a Gaussian instead
of a sine or a shifted sine function.

t=0.01 t=0. 02

o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7

Figure 12: Matrix of interaction between scales: time steps 1, 2

5 Two Dimensions

We have also computed an analogous wavelet decomposition of the energy
transfer phenomenon in the two dimensional case. We started with two
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Figure 13: Matrix of interaction between scales: time steps 4, 6

t=0.14 t=0.18

o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7

Figure 14: Matrix of interaction between scales: time steps 14, 18
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t=0. 26 t=0.41

o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7

Figure 15: Matrix of interaction between scales: time steps 26, 41

bumps, one negative and the other positive, and crashed them into one an-
other much as in the unidimensional case. The evolving signal, sampled on
a 64 x 64 grid over 100 time steps, is displayed in the left-hand parts of Fig-
ures 16, 17, 18, and 19. The associated 4096 x 4096 instantaneous evolution
operator is far too complicated to analyze in detail, so we limited ourselves
to studying transfers of total energy among the 6 (isotropic) scales in that
picture. This gave the much simpler 6 x 6 energy transfer matrix visible in
the right-hand parts of Figures 16, 17, 18, and 19. The bidimensional signal
exhibits similar variations of its summed absolute wavelet amplitudes as the
unidimensional signal.

6 Future directions

These computations make rigorous the notion of energy transfer between
scales within a solution of the 1-dimensional Burgers equation. To go fur-
ther in this direction, we could refine the analysis to determine how energy
is transferred between scales at each spatial location. This might introduce
some additional dyadic grid artifacts, such as were already present in the
propagating solution analysis. It is thus difficult to describe the instanta-
neous evolution operator at a fixed time step.
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Figure 16: Signal and time derivative of wavelet coefficient absolute values
at t =0.10
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Figure 17: Signal and time derivative of wavelet coefficient absolute values
at t = 0.50
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Figure 18: Signal and time derivative of wavelet coefficient absolute values
at t = 0.60
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Figure 19: Signal and time derivative of wavelet coefficient absolute values
at t = 1.00
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Even the scale interaction matrices are only able to show accurately the
average contribution of one scale to another, namely the sum over all wavelets
of a given scale.

The few tools we built and used for this brief analysis show how it is
possible to use wavelets to measure energy transfers between scales in a sam-
pled solution to a model equation. Even our very simple examples contain
some obstacles to a straightforward analysis, such as shift artifacts. Never-
theless these first results could be considered rather encouraging. Moreover,
considering our very preliminary results, the same wavelet description of the
propagation phenomenon seems to be useful even in the two dimensional
case.
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